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Abstract

We address the challenge of unsupervised mistake detection
in egocentric video of skilled human activities through the
analysis of gaze signals. While traditional methods rely on
manually labeled mistakes, our approach does not require
mistake annotations, hence overcoming the need of domain-
specific labeled data. Based on the observation that eye
movements closely follow object manipulation activities, we
assess to what extent eye-gaze signals can support mis-
take detection, proposing to identify deviations in attention
patterns measured through a gaze tracker with respect to
those estimated by a gaze prediction model. Since predict-
ing gaze in video is characterized by high uncertainty, we
propose a novel gaze completion task, where eye fixations
are predicted from visual observations and partial gaze tra-
jectories, and contribute a novel gaze completion approach
which explicitly models correlations between gaze informa-
tion and local visual tokens. Inconsistencies between pre-
dicted and observed gaze trajectories act as an indicator to
identify mistakes. Experiments highlight the effectiveness
of the proposed approach in different settings, with rela-
tive gains up to +14%, +11%, and +5% in EPIC-Tent,
HoloAssist and IndustReal respectively, remarkably match-
ing results of supervised approaches without seeing any la-
bels. We further show that gaze-based analysis is partic-
ularly useful in the presence of skilled actions, low action
execution confidence, and actions requiring hand-eye co-
ordination and object manipulation skills. Our method is
ranked first on the HoloAssist Mistake Detection challenge.

1. Introduction
Smart glasses are gaining more and more popularity, with
various existing products capable of supporting the user
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Figure 1. Top: gaze trajectories of a correct and wrong execution
of the “place water container” action, together with gaze fixation
maps averaged across many action instances. Note the higher vari-
ability exhibited by wrong executions. Bottom: (a) The proposed
unsupervised mistake detection method assumes as input a video
with a partial gaze trajectory on the initial part of the video. (b) A
gaze completion model predicts a gaze trajectory for the remain-
ing part of the video, conditioned on the input video and the partial
trajectory. (c) A mistake is detected if the predicted trajectory is
significantly different from the observed one, suggesting a devia-
tion from the expected attention patterns.

through Augmented Reality. In order to provide timely as-
sistance, wearable devices should be able to identify mo-
ments in which the user makes mistakes or is confused and
requires help [7]. If such instances are properly detected,
the AI system can proactively offer contextual information
or suggestions on how to best carry out the task at hand [42].

Previous works tackled the problem of detecting mis-
takes from a fully supervised perspective, where mistake
instances were labeled in egocentric video and machine
learning algorithms were trained to discriminate between
video segments of correct action executions and incorrect
ones [34, 42]. Such a fully supervised approach has two
main downsides: 1) It is domain-dependent, hence requiring
an accurate characterization of what a mistake is, depending
on the context (e.g., a mistake in a kitchen is different from



a mistake in the assembly line); 2) It requires to collect and
label a sufficient number of mistake instances, which may
be difficult to observe and record, involve time consuming
procedures, and require expert knowledge. Another class of
methods [9, 33] aim to detect mistakes without relying on
mistake annotations, but still requires domain-specific and
costly temporal action annotations. Ideally, a wearable as-
sistant should be able to infer when the behavioral patterns
of the user deviate from the norm in order to determine if
they need assistance in a scenario-independent setting, i.e.,
without making specific assumptions on how a mistake is
defined and without requiring costly labels. To overcome
the aforementioned limitations, we propose to detect mis-
takes in egocentric videos of human activity in an unsuper-
vised way, learning from unlabeled video.

Mistakes in task execution, in particular for tasks requir-
ing hand-eye coordination and object manipulation skills,
often involve abnormal attention patterns of the camera
wearer [17, 18]. For instance, imagine a user operating a
coffee machine without first adding water. As they press the
brew button, they notice that no coffee is produced and start
shifting their attention erratically between the cup, the wa-
ter tank, and the LED indicator, deviating from the typical
attention sequence of “button → cup → button.” (See Fig-
ure 1(top)). This behavior is well-documented in psychol-
ogy literature, which shows that gaze patterns are crucial
for the execution of even the most repetitive daily activities
(e.g., making tea) [20], and that they change in response to
task complexity [30] and mistakes [29].

Following these observations, we study how the analysis
of eye-gaze fixations can support mistake detection in ego-
centric video of skilled human activities. We hence propose
to learn a model of “normal” attention patterns in the form
of a gaze predictor producing likely eye gaze trajectories
from a video at inference time. Since gaze prediction can
be governed by high uncertainty, depending on the user’s
goals, we propose a novel “gaze completion” task in which
a model takes as input a video and a partial gaze trajectory
(Figure 1(a)) and is tasked to predict a likely continuation
of the partial trajectory (Figure 1(b)). Gaze completion is
tackled with a novel approach based on a Gaze-Frame Cor-
relation module which explicitly models the correlation be-
tween gaze information and each local visual token. We ex-
pect videos of correct action executions to represent normal
user behavior, and hence to be characterized by predictable
gaze patterns, while human behavior will deviate from nor-
mality, and gaze will be unpredictable, when a mistake is
made by the user. We hence signal a mistake by comparing
the predicted gaze with the ground truth eye gaze trajectory
obtained through a gaze tracker (Figure 1(c)).

Experiments show the effectiveness of the proposed ap-
proach, both alone, or in combination with other tech-
niques, when compared to one-class anomaly detection

methods [8, 39], and various unsupervised mistake detec-
tion baselines, with relative gains up to +14%, +11%,
and +5% in the on EPIC-Tent [15], HoloAssist [42] and
IndustReal [32] datasets respectively, remarkably match-
ing the results of supervised methods without any labels
in one-class settings. Our analysis also shows that gaze
is most effective in the presence of complex actions, low-
confidence executions, and actions requiring hand-eye co-
ordination and object-manipulation skills.

In summary, the contributions of this work are as fol-
lows: 1) We investigate for the first time the problem of
unsupervised mistake detection from egocentric video of
human activity and provide an initial benchmark based on
three datasets. 2) We define the novel “gaze completion”
task where models predict gaze trajectories from video and
partial gaze inputs, and introduce an approach based on
a Gaze-Frame Correlation module; 3) We propose an ap-
proach to unsupervised mistake detection leveraging gaze
completion to identify instances of unpredicable gaze pat-
terns. Experiments analyze under which conditions gaze-
based analysis is most useful and show the effectiveness of
the approach, in one-class and unsupervised settings.

We will publicly release the code and model checkpoints
to support future research.

2. Related Work
Egocentric gaze estimation Literature on gaze estimation
from egocentric video is rich, with previous works inves-
tigating simultaneous gaze prediction and action recogni-
tion [5], describing gaze prediction approaches incorporat-
ing egocentric cues [21], modeling task-dependent atten-
tion transition [13], leveraging vanishing point, manipula-
tion point, hand regions [41], introducing specific archi-
tectures [1, 19], and proposing datasets to study egocentric
gaze estimation and its applications in a variety of scenar-
ios [12, 14, 22, 32, 42]. We propose a novel gaze comple-
tion task and show its application to the problem of unsu-
pervised mistake detection in egocentric video. Differently
from previous works, we define and tackle the novel task
of gaze completion, with the aim to reduce the uncertanty
associated with gaze prediction.
Use of gaze in egocentric vision While many previous
works focused on gaze estimation from video, few works
investigated the use of gaze, estimated through a dedicated
gaze tracker, as an input to support downstream egocentric
vision applications. Specifically, previous investigations fo-
cused on discovering object usage [3], detecting privacy-
sensitive situations [38], finding attended objects [27], as-
sisting large language models in classification tasks [16],
enhancing visual tasks [44, 46], improving egocentric hu-
man motion prediction [45], and aiding natural language
processing tasks [36]. We show the effectiveness of gaze
in mistake detection. Our method compares gaze trajecto-



ries predicted from visual data with gaze estimated through
a gaze tracker to identify mistakes when predictions devi-
ates from the ground truth.
Mistake Detection in Egocentric Videos Mistakes natu-
rally occur in human activities. The ability to automati-
cally detect them from egocentric video can be beneficial
for an AR assistant to offer support. Identifying mistakes
usually entails modeling procedural knowledge [4, 9, 34],
skill assessment [10], action segmentation [11] or detecting
forgotten actions [37]. Notably, previous works tackled the
task in a supervised fashion, training models to classify an
action segment as “correct” or “mistake” in manually anno-
tated instances [34, 42]. While this approach is feasible in
a closed-world scenario, it requires 1) a definition of what a
mistake is, depending on the domain (e.g., kitchens vs the
assembly line), 2) significant amounts of manually labeled
data, which is expensive and requires expert knowledge. In
this work, we tackle an unsupervised mistake detection task,
in which models observe unlabeled video at training time
and are tasked to detect mistakes from video at test time.
Our unsupervised scheme is possible through the analysis
of gaze attention patterns, which provide a supervisory sig-
nal to create a joint video-gaze model of normal behavior.
Video Anomaly Detection Our research also relates to the
problem of Video Anomaly Detection (VAD), which in-
volves recognizing abnormal or anomalous events within
videos [23, 39]. A line of video anomaly methods are based
on one-class classification, in which models are trained on
normal videos and aim to identify divergence from the norm
at test time [6, 8, 24, 25, 39, 40, 43]. Notably, anomaly
detection in egocentric vision remains under-explored [26].
Similar to video anomaly detection, we aim to detect mis-
takes by determining video segments which deviate from
statistics observed at training time [8]. Differently from
previous works in video anomaly detection, we ground
our predictions in an egocentric gaze estimation model,
which acts as a proxy for modeling normal human behav-
ior, hence effectively achieving mistake prediction detection
when anomalous behavior is observed. Moreover, we go
beyond the one-class assumption and show that our method
can also be used in unsupervised settings where unlabeled
correct and mistake examples are included at training time.

3. Proposed Approach

3.1. Mistake Detection Problem Setup
The mistake detection task consists in highlighting those
parts of the video in which the user is making a mistake dur-
ing the execution of a given activity. In our setup, at each
time-step t, a model Φ takes as input a video V observed up
to time-step t, V1:t, and a 2D gaze trajectory T1:t obtained
with a gaze tracker, where the i-th element of the trajectory
T

(x,y)
i is a 2D gaze fixation in frame Vi. Given this input,

the model has to return a score st = Φ(V1:t, T1:t) indicat-
ing whether a mistake is happening at the current time t.
In this context, high st scores indicate the occurrence of a
mistake, while low st scores indicate a correct action. We
can hence see the mistake detection problem as a classifi-
cation task, in which timestep t is classified as a mistake
if st > θ, where θ is a chosen threshold. We follow pre-
vious literature on anomaly detection [8, 39] and evaluate
methods in a threshold-independent fashion by reporting the
Receiver Operating Characteristics Area Under the Curve
(ROC-AUC), where we consider “mistake” as the positive
class1. For completeness, we also report the best F1 score
achieved considering the different thresholds, as well as its
related precision and recall values.

3.2. Proposed Approach
At each timestep t, we trim the input video V1:t and gaze
trajectory T1:t to the last observed F frames, hence con-
sidering Vt−F :t and Tt−F :t as inputs to our mistake detec-
tion method. (Figure 1(a)). Our method relies on two main
components: a gaze completion model (Figure 1(b)), and a
scoring function (Figure 1(c)).
Gaze Completion Model Figure 2 illustrates the proposed
gaze completion model. The model takes as input the
video Vt−F :t and the first half of the input gaze trajectory
Tt−F :t−F/2 and predicts a gaze trajectory T̂t−F/2:t aligned
to the remaining part of the ground truth trajectory Tt−F/2:t.
The goal of this model is to predict where the user is look-
ing in the video, conditioned on the initial trajectory. As
we show in the experiments, the conditioning allows to re-
duce the uncertainty on gaze predictions and give a prior
into the intention and characteristics of the user. For in-
stance, the model can notice that the user is a novice from
the partial input trajectory or get an understanding of the
performed activity and adapt its prediction accordingly. We
build on [19] and propose an encoder-decoder transformer-
based architecture, including two approaches to condition
gaze prediction on the input partial trajectory: channel fu-
sion and correlation fusion.
Model Overview The input gaze trajectory Tt−F :t is en-
coded into a stack of heatmaps Q obtained by centering
a Gaussian distribution of standard deviation σ around the
gaze points. The first half of the stack Q1:F/2, correspond-
ing to the input half trajectory Tt−F :t−F/2, is forwarded to
the two trajectory fusion models (paths (1) and (2) in Fig-
ure 2), which inject information on the input trajectory at
different semantic levels in the model. Input frames Vt−F :t

are processed by a token embedding layer which maps them
to visual tokens with a convolution as in [19]. This mod-

1A true positive is a mistake correctly classified as a mistake, a true
negative is a correct execution correctly classified as a correct execution, a
false positive is a correct execution wrongly classified as a mistake, and a
false negative is a mistake wrongly classified as a correct execution.
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Figure 2. The model takes as input F RGB frames Vt−F :t and a partial 2D gaze trajectory Tt−F :t−F/2 on the first F/2 input frames,
and outputs a predicted trajectory T̂t−F/2:t from the input video, conditioned on the input trajectory. The input trajectory is encoded as
a spatio-temporal heatmap Q. Trajectory and RGB inputs are fused using two strategies, channel fusion, which adds gaze heatmaps as a
separate channel (1), and correlation fusion, which uses a dedicated gaze-visual correlation module (2). We follow the design of [19] and
process our inputs with a transformer encoder-decoder architecture which outputs a predicted gaze heatmap Q̂, supervised via a standard
Kullback–Leibler divergence loss using the ground truth unobserved trajectory Tt−F/2:t. The output trajectory T̂t−F/2:t is recovered from
Q̂ using a peak finding operation.

ule is also responsible for mapping the input heatmaps to
a single trajectory token. Input tokens are then processed
by the transformer encoder, by the gaze-visual correlation
module and finally by the transformer decoder to output
a likely completion of the gaze in the form of heatmaps
Q̂, which are supervised with a standard Kullback–Leibler
loss. Specifically, Q̂ contains F heatmaps related to the F
input frames Vt−F :t. The final trajectory T̂ is obtained by
finding the global maxima of the predicted gaze heatmaps.
Channel Fusion The channel fusion module (Figure 2(1))
adds the heatmaps in Q1:F/2 to the first F/2 frames of the
input video, Vt−F :t−F/2 as an additional channel. The val-
ues of this channel are set to zero for the remaining frames.
This form of early fusion acts as a soft conditioning aiming
to include information about the input gaze trajectory in the
computation. Note that, in order to incorporate information
about the relationships between haze and input frames, the
model needs to learn how to compute suitable gaze repre-
sentations from the additional input channel during training.
Correlation Fusion This approach (Figure 2(2)) aims to fuse
visual tokens with the gaze trajectory token computed by
the token embedding layer. Inspired by global-local fu-
sion originally proposed in [19], this is done in two stages.
First, within the transformer encoder, where attention be-
tween all visual features and the gaze token is computed. In
this stage, correlations between all visual tokens and across
visual and gaze tokens are leveraged to obtain a strong rep-
resentation. Second, within the dedicated gaze-visual cor-
relation module. Here, attention is computed only between
the gaze token and the visual tokens, thus learning a ded-

icated attention mechanism which explicitly enriches the
representation of each visual token with gaze information.
Note that this fusion mechanism operates both at the early
(through the encoder) and mid (through the gaze-visual cor-
relation module) levels, thus allowing to leverage low-level
(co-occurrences of gaze and visual features) and more se-
mantic (co-occurrences of gaze and semantic visual con-
cepts) information.
Scoring Function Our approach predicts the mistake con-
fidence score st by comparing the predicted trajectory
T̂t−F/2:t with the ground truth one Tt−F/2:t which is ob-
tained by the gaze tracker of the wearable device. We
explore four different ways to compare the two trajecto-
ries: Euclidean distance, Dynamic Time Warping (DTW),
Heatmap, and Entropy.
Euclidean Distance This method consists in accumulating
the Euclidean distances computed between corresponding
points in each trajectory as the score st:

st =

F∑
i=F/2+1

∥Tt−F+i − T̂t−F+i∥. (1)

Dynamic Time Warping This scoring function uses Dy-
namic Time Warping (DTW)[31] to measure the distance
between trajectories:

st = DTW(T, T̂ ) (2)

Where DTW returns the cost of aligning T to T̂ according to



the DTW algorithm2.
Heatmap Differently from previous functions, this approach
explicitly considers the probability values predicted by the
model at each location.Specifically, we evaluate the likeli-
hood of a ground truth eye fixation Ti obtained by the device
under the predicted heatmap Q̂i, which can be computed as:

P (Ti|Q̂) = Q̂i(T
x
i , T

y
i ) (3)

where T x
i and T y

i are the coordinates of the trajectory point
Ti = [T x

i , T
y
i ]. The score associated to the predicted tra-

jectory T̂ is computed as the sum of the likelihoods of each
trajectory point, considering the predicted heatmap Q̂:

st =

F∑
i=F/2+1

P (Tt−F+i|Q̂). (4)

Entropy This is the only method which does not require
ground truth gaze for computation. We consider this mea-
sure as a way to check whether mistakes are systematically
characterized by uncertain gaze predictions. In this case, the
score st is set as the mean entropy of all predicted heatmaps
for a given trajectory T̂ . The entropy H of a single heatmap
Q̂ is given by:

st = − 1

F/2

F∑
i=F/2+1

∑
x,y

Q̂
(x,y)
t−F+i log2(Q̂

(x,y)
t−F+i) (5)

Q
(x,y)
j is the value at coordinates (x, y) of heatmap Qj .

4. Experiments and Results
4.1. Datasets and Implementation Details
We perform our experiments on three popular datasets.
EPIC-Tent [14] includes 7 hours of egocentric video of 29
subjects wearing a head-mounded GoPro and an SMI eye
tracker while assembling a camping tent. The dataset in-
cludes egocentric video, gaze and labels indicating video
segments in which users make mistakes. Subjects also rated
their level of confidence in action execution in each clip in
the videos. EPIC-Tent contains 151, 689 mistake frames
and 384, 558 frames of correct executions, hence with a
28:72 ratio between correct and mistake frames. Since
no official train-test split is available, we randomly split
videos in training, validation and test sets roughly follow-
ing a 60:15:25 ratio, obtaining 86, 099, 27, 613, and 37, 977
mistake frames in the training, validation, and test sets re-
spectively. Since the dataset contains a single video per sub-
ject, there is no subject overlap between the three sets.
IndustReal [32] is designed for studying procedural tasks
in industrial-like environments and consists of distinct train-
ing, validation, and test sets. The training set comprises

2We used this implementation: https://pypi.org/project/
fastdtw/.

78, 902 frames, with 95.68% frames labeled as correct and
4.32% labeled as mistakes. The validation set includes
38, 036 frames, with 95.18% correct and 4.82% mistaken
frames. The test set contains 90, 105 frames, with 92.53%
correct and 7.47% mistaken frames.
HoloAssist [42] focuses on a variety of scenarios in which
users perform tasks with the assistance of an expert.
The training set comprises 11, 614, 033 frames, with 94%
frames labeled as correct and 6% labeled as mistakes. The
test set contains 1, 699, 562 frames, with 95% correct and
5% mistake frames.
Implementation Details We process input frames with a
stride of 1 and set the batch size to 4 clips of 8 frames each.
Weight decay is set to 0.07 to prevent overfitting. See the
supplementary material for more details.

4.2. Supervision Levels and Compared Approaches

We compare the proposed approach to methods belonging
to three different supervision levels: fully supervised, one-
class classification, and unsupervised. All baselines de-
scribed below are compared with a random baseline which
assigns a random score to each input clip.
Fully Supervised Methods are trained assuming the avail-
ability of mistake labels for all image frames. We consider
this class of methods to provide an upper-bound to perfor-
mance when assessing one-class and unsupervised meth-
ods. We consider two approaches in this class: a TimeS-
former [2] action recognition model which classifies the
input video clips without access to any temporal context
from actions executed before or after the current one, and
a C2F [35] temporal action segmentation model operating
on DINOv2 [28] features, which naturally performs action
segmentation taking into account the temporal context in
which an action (or mistake) is executed.
One-Class Classification Methods are trained only on
videos of correct executions, following the standard setup
of anomaly detection [8, 39]. In this context, we assume
that the data is verified by an expert for correctness be-
fore being used for training. Note that this check does not
require marking the temporal occurrence of mistakes, but
only discarding any video which contains mistakes. For
this class, we compare our method with respect to Tra-
jREC [39] and MoCoDAD [8], two popular approaches for
video anomaly detection based on the processing of human
skeletal data. Since full human skeletons are not visible in
egocentric videos, we replace skeletal data with hand joint
keypoints3. We also adapt TrajREC and MoCoDAD to take
a single gaze point instead of, or in addition to, the hand
keypoints to assess the ability of such methods to leverage

3We use ground truth hand keypoints in HoloAssist and IndustReal,
while we extract keypoints with https://github.com/open-
mmlab/mmpose in EPIC-Tent.

https://pypi.org/project/fastdtw/
https://pypi.org/project/fastdtw/
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose


Scoring Fusion F1 Precision Recall AUC
1 Random // 0.36 0.29 0.42 0.51
2 Entropy // 0.41 0.27 0.62 0.51
3 Euclidean // 0.42 0.29 0.60 0.55
4 DTW // 0.44 0.31 0.68 0.56
5 Heatmap // 0.45 0.32 0.70 0.57
6 Heatmap CH 0.45 0.32 0.74 0.63
7 Heatmap CORR 0.50 0.36 0.82 0.65
8 Heatmap CH + CORR 0.51 0.36 0.85 0.69

Table 1. Ablation of various scoring functions and fusion strate-
gies on EPIC-Tent in the unsupervised setting. Best results per-
block are underlined, while best global results are in bold. CH:
channel fusion, CORR: correlation fusion.

eye-gaze information4. We compare these models to an in-
stantiation of the proposed approach in which the gaze com-
pletion model is trained only on correct executions, hence
effectively replicating a one-class scheme. We also com-
pare with respect to a baseline which replaces the proposed
gaze completion module with a simple gaze prediction com-
ponent based on GLC [19]. Following the one-class setup,
we train the GLC method of [19] on correct executions only
and compare the predicted and ground truth gaze using the
considered scoring functions.
Unsupervised Methods assume no knowledge of which
examples are correct executions and which are mistakes.
Hence, models are trained on a natural mix of correct and
incorrect action executions. This is the least constrained
case in which the collected data is not verified by an expert
prior to training. We compare our model with TrajREC and
MoCoDAD adapted as discussed above and with the gaze-
prediction baseline GLC [19].

4.3. Performance of Proposed Model and Ablations
Table 1 reports the performance of the proposed approach
in unsupervised settings, evaluating the considered scoring
functions and gaze-video fusion strategies in the unsuper-
vised mistake detection settings on EPIC-Tent. Rows 2-5
compare scoring functions when both fusion strategies are
turned off and the model is not conditioned on previous tra-
jectories. The entropy scoring function achieved an AUC
of 0.51 and an F1 score of 0.41 (row 2), only marginally
above the random baseline (F1 of 0.36), suggesting that
high entropy in the predictions marginally correlates with
the presence of a mistake. Alternative scoring functions
improved the results, yielding an AUC of 0.55 and 0.56
when using Euclidean distance and DTW scoring functions,
respectively (rows 3-4). The heatmap-based scoring func-
tion produced the best results, with an AUC of 0.57 and an
F1 score of 0.45, significantly above random level (com-
pare with the F1 score of 0.36 in row 1). The advantage
of the heatmap scoring function is likely due to the better

4See supplementary material for more details.

Method Sup. Level F1 Precision Recall AUC
Random // 0.36 0.29 0.42 0.51
TimeSformer [2] Fully Supervised 0.49 0.35 0.80 0.67
C2F [35] Fully Supervised 0.58 0.44 0.85 0.72
TrajREC (G) [39] One-Class 0.40 0.26 0.88 0.51
MoCoDAD (G) [8] One-Class 0.43 0.27 0.91 0.50
TrajREC (H) [39] One-Class 0.44 0.31 0.76 0.55
MoCoDAD (H) [8] One-Class 0.46 0.33 0.79 0.60
TrajREC (H+G) [39] One-Class 0.42 0.29 0.75 0.53
MoCoDAD (H+G) [8] One-Class 0.43 0.30 0.77 0.56
TrajREC (H+G)* [39] One-Class 0.47 0.34 0.77 0.63
MoCoDAD (H+G)* [8] One-Class 0.49 0.35 0.81 0.65
GLC [19] One-Class 0.46 0.37 0.62 0.66
Ours One-Class 0.52 0.37 0.85 0.69
Ours + MoCoDAD (H)* One-Class 0.54 0.41 0.86 0.72
TrajREC (G) [39] Unsupervised 0.27 0.16 0.94 0.50
MoCoDAD (G) [8] Unsupervised 0.33 0.21 0.88 0.51
TrajREC (H) [39] Unsupervised 0.40 0.27 0.79 0.58
MoCoDAD (H) [8] Unsupervised 0.41 0.27 0.86 0.60
MoCoDAD (H+G)* [8] Unsupervised 0.41 0.27 0.88 0.60
GLC [19] Unsupervised 0.44 0.33 0.70 0.61
Ours Unsupervised 0.51 0.36 0.85 0.69
Ours + MoCoDAD (H)* Unsupervised 0.52 0.37 0.88 0.70
* Late fusion

Table 2. Mistake detection results on EPIC-Tent. Best results are
in bold, second best results are underlined.

exploitation of the probability values computed by the gaze
prediction model, as compared to other scoring functions.
Hence, we adopted the heatmap-based scoring as our pri-
mary method in following comparisons.

Rows 6-7 compare approaches using one of the two fu-
sion strategies. While both fusion strategies improve re-
sults (compare rows 6-7 with 5), the proposed correlation
strategy (CORR) systematically outperforms channel fu-
sion, obtaining an AUC score of 0.65 and an F1 score of
0.50 and doubling the recall of the random baseline (0.82
vs 0.42) with better precision (0.36 vs 0.29). Combining
the two fusion strategies (row 8) leads to an AUC of 0.69
and an F1 score of 0.51 (+0.12 and +0.06 compared to the
standard heatmap method - row 5). This configuration is the
one referred to as “ours” in future comparisons.5

4.4. Comparison with the state of the art
EPIC-Tent Table 2 compares the proposed mistake detec-
tion approach with competitors on EPIC-Tent, according to
the three considered levels of supervision. C2F outperforms
TimeSformer in all evaluated metrics, particularly in the F1
score (0.58 of C2F vs 0.49 of TimeSformer and 0.36 of the
random baseline), suggesting that C2F is more adept at cap-
turing temporal reasoning, which is crucial for identifying
mistakes in dynamic activities. However, the reliance on
fully labeled datasets poses limitations for both methods.
One-class methods for anomaly detection adapted to take
only gaze as input, namely, TrajREC (G) and MoCoDAD
(G), show minor improvements over the random baseline in
terms of AUC score (0.50 − 0.51 vs 0.51) and only small

5See supplementary material for additional ablations.



improvements in F1 score (0.40−0.43 vs 0.36). High recall
values, paired with low precision, suggest that these meth-
ods tend to classify most clips as mistakes. Incorporating
hand skeleton data instead of gaze, namely, TrajREC (H)
and MoCoDAD (H), leads to slight improvements, as evi-
denced by F1 scores of 0.44 and 0.45, and AUC values of
0.55 and 0.60. Combining (H) and (G) models through late
fusion (denoted with ∗) improves the results, with MoCo-
DAD (H+G)∗ achieving an F1 score of 0.49 and an AUC of
0.65, suggesting that the signals captured by gaze-based and
hand-based analyses are complementary. The one-class ap-
proach based on GLC [19] gaze prediction shows improved
results compared to previous one-class methods, being only
slightly less effective than the late fused method, despite not
analyzing any hand-based information. This highlights the
value of leveraging gaze analysis for mistake detection. “‘

Finally, the proposed method based on gaze completion
obtains the best results, yielding an AUC of 0.69, an F1-
score of 0.52, a precision of 0.37, and a recall of 0.85,
which amount to relative improvements of +5/13%6 with
respect to the best approach GLC and +35/44% with re-
spect to the random baseline. Late-fusing our approach with
MoCoDAD (H) achieves enhanced results with an AUC of
0.72 and an F1 score of 0.54, improving over compared ap-
proaches, suggesting that gaze analysis can further benefit
from integration with approaches based on different cues.
It is worth noting that our best method remarkably achieves
the same AUC score of 0.72 as the best supervised approach
and a comparable F1 score (0.54 vs 0.58) without access
to labels during training. We compare unsupervised ap-
proaches in the bottom part of Table 2. Similarly to the
one-class case, TrajREC (H) and MoCoDAD (H) slightly
improve over the random baseline (e.g., 0.40 and 0.41 vs
0.36 of the random baseline in F1 score). GLC outperforms
these former two methods obtaining an F1 score of 0.44 and
an AUC score of 0.61, which are lower than the scores of
0.46 and 0.66 obtained in the one-class setting. In these set-
tings, the proposed method achieves an F1 score of 0.51,
which is comparable to the score obtained in one-class set-
tings 0.52 with similar and recall values and the same AUC
of 0.69, despite the unsupervised setting being more chal-
lenging. Late fusion with MoCoDAD (H) brings some ad-
ditional improvements, with an F1 score of 0.52 and AUC
of 0.70.

Table 3 compares the proposed method with competitors
on HoloAssist, which presents a more varied and expansive
context than EPIC-Tent, making mistake detection more
challenging. The random baseline achieves an F1 score of
only 0.04. One-class methods like TrajREC and MoCo-
DAD improve over the baseline but tend to classify most
clips as mistakes, with high recall values (0.96 and 0.94).
Hand keypoint-based methods show improvements, with

6We compute the relative improvement of b with respect to a as b−a
b

Method Sup. Level F1 Precision Recall AUC
Random // 0.04 0.02 0.39 0.50
TimeSformer [2] Fully Supervised 0.21 0.35 0.13 0.58
C2F [35] Fully Supervised 0.38 0.37 0.40 0.65
TrajREC (G) [39] One-Class 0.09 0.04 0.96 0.50
MoCoDAD (G) [8] One-Class 0.11 0.06 0.94 0.51
TrajREC (H) [39] One-Class 0.19 0.11 0.72 0.56
MoCoDAD (H) [8] One-Class 0.17 0.10 0.71 0.55
TrajREC (H+G) [39] One-Class 0.13 0.07 0.68 0.52
MoCoDAD (H+G) [8] One-Class 0.14 0.08 0.62 0.52
TrajREC (H+G)* [39] One-Class 0.20 0.12 0.71 0.56
MoCoDAD (H+G)* [8] One-Class 0.21 0.12 0.75 0.57
GLC [19] One-Class 0.19 0.11 0.56 0.60
Ours One-Class 0.22 0.14 0.59 0.61
Ours + MoCoDAD (H)* One-Class 0.26 0.16 0.73 0.63
TrajREC (G) [39] Unsupervised 0.05 0.03 0.92 0.50
MoCoDAD (G) [8] Unsupervised 0.07 0.04 0.92 0.50
TrajREC (H) [39] Unsupervised 0.11 0.07 0.32 0.56
MoCoDAD (H) [8] Unsupervised 0.14 0.10 0.25 0.55
MoCoDAD (H+G)* [8] Unsupervised 0.15 0.11 0.25 0.56
GLC [19] Unsupervised 0.10 0.06 0.34 0.54
Ours Unsupervised 0.18 0.12 0.40 0.59
Ours + MoCoDAD (H)* Unsupervised 0.21 0.15 0.40 0.60
* Late fusion

Table 3. Mistake detection result on HoloAssist.

TrajREC (H) slightly outperforming MoCoDAD (H). GLC
demonstrates better AUC and F1 scores, with more bal-
anced precision and recall metrics. Our approach achieves
an AUC of 0.61 and an F1 score of 0.22 in one-class set-
tings, with the best results from late fusion with MoCo-
DAD, yielding an F1 score of 0.26 and an AUC of 0.63.
In the unsupervised scenario, TrajREC (G) and MoCoDAD
(G) show limited effectiveness, while the (H) approaches
perform slightly better. Our method achieves an AUC of
0.59 and an F1 score of 0.18, showing robustness across
evaluation settings and relative improvements over GLC,
with gains of +9% and +80%, respectively. Combining
with MoCoDAD (H) further enhances performance.

Results on IndustReal, shown in Table 4, confirm the
trends observed in HoloAssist. TrajREC and MoCoDAD
bring small improvements over the random baseline in H,
G, and H+G configurations. Our method outperforms com-
petitors with improvements over GLC of +5% in AUC and
+14% in F1 in one-class settings, and +6% in AUC in un-
supervised settings, while late fusion with MoCoDAD (H)
does not improve performance due to MoCoDAD’s reduced
effectiveness in this scenario.

4.5. Contribution of gaze across scenarios
In this section, we analyze the performance of our method
with respect to scenarios in order to assess under which con-
ditions gaze analysis is more or less predictive of mistakes.
Action Complexity We investigated how action complexity
correlates with gaze-predicted mistakes in procedural tasks.
We asked 40 volunteers to rate the complexity of perform-
ing actions contained in HoloAssist without looking (1 =
easy, 5 = difficult). We then compared the complexity of
the action associated to a given video segment to the ability



Method Sup. Level F1 Precision Recall AUC
Random // 0.12 0.06 0.62 0.51
TimeSformer [2] Fully Supervised 0.20 0.12 0.35 0.58
C2F [35] Fully Supervised 0.31 0.29 0.31 0.67
TrajRE(G) [39] One-Class 0.17 0.09 0.90 0.53
MoCoDAD(G) [8] One-Class 0.18 0.10 0.91 0.55
TrajREC(H) [39] One-Class 0.21 0.12 0.88 0.57
MoCoDAD(H) [8] One-Class 0.22 0.13 0.81 0.60
TrajREC(H+G) [39] One-Class 0.18 0.10 0.86 0.55
MoCoDAD(H+G) [8] One-Class 0.19 0.11 0.79 0.58
TrajREC(H+G)* [39] One-Class 0.21 0.12 0.88 0.58
MoCoDAD(H+G)* [8] One-Class 0.22 0.13 0.82 0.61
GLC [19] One-Class 0.21 0.15 0.33 0.60
Ours One-Class 0.24 0.18 0.35 0.63
Ours + MoCoDAD (H)* One-Class 0.26 0.17 0.60 0.65
TrajREC (G) [39] Unsupervised 0.11 0.06 0.92 0.51
MoCoDAD (G) [8] Unsupervised 0.11 0.06 0.92 0.51
TrajREC (H) [39] Unsupervised 0.15 0.11 0.28 0.55
MoCoDAD (H) [8] Unsupervised 0.16 0.12 0.29 0.57
MoCoDAD (H+G)* [8] Unsupervised 0.17 0.12 0.30 0.57
GLC [19] Unsupervised 0.21 0.15 0.33 0.58
Ours Unsupervised 0.21 0.16 0.33 0.62
Ours + MoCoDAD (H)* Unsupervised 0.20 0.15 0.32 0.61
* Late fusion

Table 4. Mistake detection result on IndustReal.

of our model to make a correct prediction (which we term
“success”). Results (see Figure 3a) showed a positive corre-
lation between difficulty and prediction success, measured
with a Point Biserial Correlation of 0.3843, with p < 0.057.
This suggests that our method is particularly effective in the
case of complex actions which cannot be carried out with-
out looking, while less effective in the case of trivial tasks.
Confidence Level On the EPIC-Tent dataset, we compared
if the self-rated confidence score reported by camera wear-
ers was correlated to the success of our method. Results (see
Figure 3b) obtained a Point Biserial Correlation of -0.1137,
p < 0.05 indicating a small but significant negative correla-
tion: our method is most effective when the self-rated con-
fidence is higher. This suggests that gaze-based analysis is
more effective in the case of novices, which reported lower
confidence and probably rely more on visual observations
when executing their tasks.
Action Type We finally assess whether the type of the
performed action affects the performance of our method.
To this aim, we grouped actions contained in all three
datasets in four categories (Hand-Eye Coordination, Object
Manipulation, Task Preparation, Inspection/Verification)8.
We hence computed the number of co-ocurrences between
success or failure of our method and the different action
classes. Results (see Figure 4) show a Cramer’s V statistic
of 0.27 (a moderate correlation of 0.27 in a 0−1 scale) with
a p-value p < 0.05. Gaze-based analysis proves particularly
useful in the case of actions requiring hand-eye coordina-
tion and object manipulation abilities, while less effective

7We use Point Biserial Correlation as action difficulty is a continuous
variable while the success of our method is a binary one.

8See supplementary material for more details.
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Figure 3. Distributions of difficulty ratings (a) and execution con-
fidence ratings (b) with respect to wrong and correct predictions.
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for generic actions such as task preparation and inspection.9

5. Conclusion

We proposed to perform mistake detection in egocentric
videos in an unsupervised way, leveraging gaze signals. We
introduced a novel gaze completion task, where gaze tra-
jectories are predicted based on observed video and partial
gaze data, and an approach to tackle this task. Mistake de-
tection is performed comparing predicted trajectories with
ground truth, identifying instances where gaze becomes un-
predictable as potential mistakes. Experimental validation
on EPIC-Tent, HoloAssist, and IndustReal demonstrates
the efficacy of our method, surpassing traditional one-class
techniques and other unsupervised mistake detection meth-
ods. Our method is ranked first on the HoloAssist Mistake
Detection challenge. Code will be publicly shared.
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