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Hi LiveCC, could you commentate on this match in real time?

Time125s124s 126s 127s 128s

The French have the ball. They're trailing by two. They're looking to get the lead. Here’s the pass. He is going to shot.

Double team defense by French. They're going to have to get it up. Here’s Curry. He's got to get a shot up. Curry. Step back. Three-pointer. Got it! Curry!

As a Video LLM trained with millions of streaming speech transcripts, I can provide play-by-play commentary.

Figure 1. LiveCC provides real-time commentary for streaming video, emulating a human commentator. This example is drawn from the
YouTube video (ID: I7pTpMjqNRM), featuring the Paris 2024 Olympics Men’s Basketball Final between France and the USA. Our 7B
model generates continuous commentary with a latency of less than 0.5 seconds per frame, supporting real-time applications at 2 FPS.

Abstract

Recent video large language models (Video LLMs) of-
ten depend on costly human annotations or proprietary
model APIs (e.g., GPT-4o) to produce training data, which
limits their training at scale. In this paper, we ex-
plore large-scale training for Video LLM with cheap au-
tomatic speech recognition (ASR) transcripts. Specifi-
cally, we propose a novel streaming training approach
that densely interleaves the ASR words and video frames
according to their timestamps. Compared to previous
studies in vision-language representation with ASR, our
method naturally fits the streaming characteristics of ASR,
thus enabling the model to learn temporally-aligned, fine-
grained vision-language modeling. To support the train-
ing algorithm, we introduce a data production pipeline
to process YouTube videos and their closed captions (CC,
same as ASR), resulting in Live-CC-5M dataset for pre-
training and Live-WhisperX-526K dataset for high-
quality supervised fine-tuning (SFT). Remarkably, even
BCorresponding Author. *Equal Contribution.

without SFT, the ASR-only pre-trained LiveCC-7B-Base
model demonstrates competitive general video QA perfor-
mance and exhibits a new capability in real-time video
commentary. To evaluate this, we carefully design a new
LiveSports-3K benchmark1, using LLM-as-a-judge to
measure the free-form commentary. Experiments show
our final LiveCC-7B-Instruct model can surpass ad-
vanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-
Video-72B) in commentary quality even working in a real-
time mode. Meanwhile, it achieves state-of-the-art results at
the 7B/8B scale on popular video QA benchmarks such as
VideoMME and OVOBench, demonstrating the broad gen-
eralizability of our approach. All resources of this paper
have been released at showlab.github.io/livecc.

1. Introduction

The success of large language models (LLMs) [3, 4, 22, 62,
63, 78, 79, 91] owes much to the large-scale auto-regressive

1Welcome to participate the real-time video commentary competition at
CVPR25 workshop loveucvpr25/track2. Free GPT-4o judging provided.

1

https://www.youtube.com/watch?v=I7pTpMjqNRM
https://huggingface.co/datasets/chenjoya/Live-CC-5M
https://huggingface.co/datasets/chenjoya/Live-WhisperX-526K
https://huggingface.co/chenjoya/LiveCC-7B-Base
https://huggingface.co/datasets/stdKonjac/LiveSports-3K
https://huggingface.co/chenjoya/LiveCC-7B-Instruct
https://showlab.github.io/livecc
https://sites.google.com/view/loveucvpr25/track2


language pre-training [8, 31, 36, 69, 70]. This inspires large
multimodal models (LMMs) [5, 29, 54, 64, 112], which
are initially only achieved by small-scale instruction tun-
ing [54, 112], to increasingly emphasize data scaling dur-
ing their training. While early large multimodal models
(LMMs) such as LLaVA [54] were only supervised fine-
tuned on 158K image QA samples, recent advanced ap-
proaches [16, 42, 50, 59, 105] have expanded the training
data to millions of multimodal conversation samples, sub-
stantially benefiting from the increased data size.

A long-term ambition in this field is to develop LMMs
akin to J.A.R.V.I.S., seamlessly assisting humans in real-life
scenarios. Building on prior successes in LLMs/LMMs,
a possible way is to collect extensive streaming video-
text chat data. For instance, recordings of a basketball
coach providing real-time feedback to a novice player could
be great data for training. However, previous studies on
streaming video LLMs [13, 24, 25, 55, 67, 68, 82, 83,
86, 98, 100, 111] have explored the difficulties of collect-
ing and scaling up such data. They either rely on LLMs
to generate “hallucinated” streaming conversations from
video annotations, or fine-tune on small-scale dense caption
datasets [32, 37, 110]. Neither approach is scalable enough
to yield a truly powerful streaming video LLM.

To address these limitations, two primary approaches
merit consideration. First, recent video-text datasets [14,
15, 81, 105] increasingly employ advanced LMMs, such as
GPT-4o [29], for synthetic data generation. While effec-
tive, this approach is costly and risks violating usage terms.
Another alternative leverages the inherent audio channel
in videos by utilizing automatic speech recognition (ASR)
transcriptions as textual data. Prior works [60, 88–90, 96]
have explored large-scale video-ASR learning but typically
treat ASR transcriptions as global video captions, overlook-
ing their valuable temporal alignment. In practice, some
ASR texts naturally synchronize with visual content, offer-
ing an untapped opportunity for video-language learning,
escepically for streaming applications.

In this work, we aim to scale video LLM training by
ASR transcriptions. We propose a novel streaming training
approach that densely interleaves ASR words with corre-
sponding video frames, as illustrated in Figure 5. The model
is trained to generate frame assigned ASR words in an au-
toregressive manner. This approach marks a significant de-
parture from prior LMMs [5, 13, 54, 111, 112], which pri-
marily learn from complete sentences or paragraphs. In
contrast, our method simply learns the native short, incom-
plete ASR word sequences that are temporally aligned with
video frames. This offers three key advantages: 1) it aligns
naturally with the real-world data, making it readily applica-
ble to video platforms like YouTube; 2) it enables the model
to learn fine-grained temporal correlations between visual
content and spoken language; and 3) during inference, it fa-

cilitates seamless streaming by generating only a few words
per frame, ensuring extremely low latency.

To achieve this goal, we address three fundamental chal-
lenges: 1) How can video-ASR data be effectively cu-
rated and selected for training? 2) How should video-ASR
streaming sequences be efficiently modeled? 3) How can
streaming word generation—termed real-time video com-
mentary—be rigorously evaluated? To tackle these chal-
lenges, we first design a data collection pipeline that inte-
grates cost-effective techniques to enhance ASR quality and
improve visual-text alignment, such as active speaker detec-
tion [47] for filtering low-quality talking-head videos. This
pipeline enables the construction of the Live-CC-5M pre-
training set and the Live-WhisperX-526K SFT set. Next,
we incorporate our streaming pre-training approach into
the Qwen2-VL-7B-Base [80] base model, yielding LiveCC-
7B-Base, and investigate key factors influencing accurate
ASR word prediction, such as leveraging video title and
previous ASR as context to mitigate the learning ambiguity.
Then, we introduce LiveSports-3K, a new benchmark that
employs the LLM-as-a-judge [109] framework for evaluat-
ing real-time video commentary. We fine-tune LiveCC-7B
on Live-WhisperX-526K and LLaVA-Video-178K [105] to
obtain LiveCC-7B-Instruct, achieving state-of-the-art per-
formance on general QA and streaming commentary tasks.

Extensive experiments demonstrate that our streaming
pre-training approach on Live-CC-5M substantially en-
hances commentary quality and yields improvements in
general video QA performance. By fine-tuning our pre-
trained model using the Live-WhisperX-526K dataset in
conjunction with LLaVA-Video-178K, our method achieves
state-of-the-art results on popular video QA benchmarks
such as Video-MME [23] and OVOBench [46], as well as
our proposed LiveSports-3K benchmark, and delivers com-
petitive performance on MVBench [45]. These results in-
dicate that our comprehensive framework is not only for
real-time video commentary but also beneficial to common
video understanding capability.

2. Related Work
Large Multimodal Models. Early LMMs [2, 20, 43, 54,
112] achieve image dialogue by projecting the visual em-
bedding (e.g., from CLIP [71, 97]) to align with LLM token
embedding space. Then, lots of efforts explore more free-
form interleaved vision-text chatting [3, 5, 40, 42, 50, 53,
64, 93], spatial/temporal grounding [12, 38, 52, 74, 80, 95,
104], video comprehension [24, 27, 29, 44, 48, 57, 75, 77,
90, 99, 106], etc. Our model is also an LMM, but it offers
new insights into cost-effective and scalable ASR training
data, as well as a new capability of real-time video com-
mentary.
Training Video LLMs. Popular video LLMs [6, 16, 80,
98, 106] typically rely on human- or LLM-crafted video
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Figure 2. LiveCC data production pipeline. We begin by inte-
grating several large-scale YouTube video datasets [60, 88, 89, 96,
105], followed by metadata filtering, resulting in a curated pool of
5.7M videos. Then, the pre-training dataset is built using the orig-
inal YouTube CC, while the SFT dataset leverages higher-quality
ASR transcriptions generated by WhisperX [7, 72]. We also intro-
duce a set of efficient filtering techniques to improve the SFT data
quality. Please refer to Section 3.1 for details.

caption/QA sequences for training. In contrast, our work
focuses on training less explored ASR transcription data,
leveraging its scalability and automatic extraction capabil-
ities. Several studies [51, 60, 88–90, 96] have investigated
learning spatio-temporal representations through video-
ASR pre-training. The most related work is Vid2Seq [90],
which pre-trains a model to predict timestamped ASR para-
graph for videos. However, its training paradigm still aligns
with previous video captioning, aiming to predict an overall
event. In contrast, our approach aligns with the streaming
ASR, learning to predict short, incomplete ASR words per
frame causally, thereby enabling more fine-grained spatial-
temporal learning.

Streaming Video Understanding. Traditional video un-
derstanding benchmarks [1, 10, 11, 28, 30, 34, 39, 58, 85]
allow models to access entire video frames before mak-
ing predictions, a setting commonly referred to as “of-
fline”. However, this paradigm does not align well with
many real-time applications (e.g., AR glasses). Previous
online video understanding tasks, such as online action de-
tection [26, 107, 108], localization [9, 35, 76], and caption-
ing [111], primarily focus on densely identifying current
or future actions. Recent advancements in streaming video
LLMs [13, 24, 25, 55, 67, 68, 82, 83, 98, 111] and bench-
marks [33, 46, 49, 86] have introduced capabilities such
as proactive response, long-form streaming, and interactive
multimodal conversation. However, they heavily rely on
manual or GPT crafted data, and will be “blind” for video
input before the text/audio generation finished. Our work
provides a comprehensive solution that leverages ASR data
to enhance both general QA and streaming capabilities, and

Figure 3. Overview of our proposed Live-CC-5M dataset.

achieves novel real-time video commentary feature, along
with a new benchmark LiveSports-3K-CC for evaluation.

3. Methodology
3.1. Video-ASR Data Curation
To demonstrate the scalability of our pre-training strategy,
we aggregate four recent large-scale video datasets–HD-
VILA [88], YT-Temporal-1B [96], VidChapters [89], and
HowTo100M [60]–as our video sources. As illustrated in
Figure 2, we begin by retrieving video metadata (e.g., title,
duration, category) and the corresponding YouTube closed
captions (CC) using the released video IDs. To ensure high
visual quality, we retain only videos with a resolution of
at least 480p. For storage efficiency, we filter videos to be
between 30 seconds and 10 minutes in length. We further
require the presence of both CC and title metadata. Ad-
ditionally, we observe that English videos typically yield
better ASR quality; therefore, we restrict our selection to
English-language content. Applying these filtering criteria
results in a curated set of 10.7 million YouTube video IDs.
YT-CC-Source-5.7M. We further observed that YouTube
metadata often mislabels the language category, e.g., mark-
ing videos as English despite containing code-mixed con-
tent or garbled characters. To address this, we ap-
ply the XLM-RoBERTa [19] (papluca/xlm-roberta-base-
language-detection) for English detection, using a confi-
dence threshold of 0.9. In addition, we discard video IDs
with sparse CC, e.g. music videos with only a few words.
We require each video to contain at least 30 distinct words
in its CC. Applying these filters, we download these 5.7 mil-
lion videos with English CC, which serves as the source for
both pre-training and SFT datasets.
YT-CC-Source-5.7M→Live-CC-5M. Upon inspection,
we observed that YouTube CC is generally of low quality–
lacking punctuation, case-insensitive, and frequently con-
taining garbled characters. Nevertheless, due to their ac-
cessibility and low cost, they offer a scalable data source,
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making them more suitable for pre-training rather than SFT.
Therefore, we design the following steps for data cura-

tion: A1) First, we segment the video based on ASR word
timestamp gaps. If the gap between words exceeds 3 sec-
onds, a new clip is generated. If a clip exceeds the maxi-
mum length, it is split into a new clip. Clips shorter than
30 seconds or with a speech rate outside the 1 to 4 words
per second range are discarded. The extended range of si-
lence or abnormal speech speed makes it hard for the model
to learn the end-of-sequence (EOS) predictions. For pre-
training, the default maximum clip length is set to 240 sec-
onds. For ablation studies, the clip length is set to 60 sec-
onds for training efficiency. We rank these clips by their
word set size, which reflects content informativeness, and
create pre-training subsets with 1M, 2.5M, 5M, and 10M
clips. A2) We compute the pure text loss of ASR transcripts
by language model to assess their dependency on visual
content. A very low perplexity suggests the transcript is
self-contained and does not require visual grounding, while
a very high perplexity often correlates with poor ASR qual-
ity. Empirically, we use Qwen2-1.5B-Instruct [91] to retain
samples with loss values in the range of 1.5 to 6.5; A3) To
remove videos with people consistently facing the camera
and talking without meaningful visual information, we ap-
ply visual filtering using Qwen-VL-2B-Instruct [80]. For
each video, we use 8 uniformly sampled frames to detect
persistent face-speaking content by prompting Qwen-VL-
2B-Instruct. We keep the videos if the model’s confidence
in detecting the talking head is below a threshold of 0.3.

Finally, we obtain Live-CC-5M for pretraining. Figure 3
shows the statistics of these data samples.
YT-CC-Source-5.7M→Live-WhisperX-526K. As the
low-quality YouTube CC makes them unsuitable for SFT
data, we further perform the following steps to obtain
high-quality, visually grounded ASR transcription: B1) We
only maintain 7 YouTube categories shown in Figure 4a
but filter out “People & Blogs” and “Film & Animation”,
as their ASR content typically lacks correspondence with
the visual events; B2) We employ WhisperX [7, 72]
(large-v3-turbo) to generate more accurate, word-
level aligned ASR transcriptions; B3) Similar to Step A1,
the maximum clip length is 240 seconds. For pretraining,
since pre-ASR provides context, clips can be split in the
middle of sentences. However, during the instruction
fine-tuning stage, where no pre-ASR context is available,
we ensure that each clip begins at the start of a sentence.
Specifically, the last ASR word must be a period, question
mark, or exclamation mark, and the current clip must
start with a capital letter; B4) The same as Step A2,
while the range of text perplexity is 1.5 to 5; B5) Despite
the above filtering steps like Step A3, we observe that
many remaining videos are dominated by talking-head
content, which is often useless for training real-time video

(a) Statistics of our proposed Live-WhisperX-526K dataset.
Remove ASD (e.g. Talking-head) Clips Maintain non-ASD Clips

(b) An example of ASD removal in SFT data pipeline.

Prompt: Can you provide a step-by-step guide on how to create a special visual effect using Photoshop?

Text Stream: …[27.0s-27.2s, “link”], [27.2s-27.4s, “it”], [27.4s-27.9s, “in”], [27.9s-28.0s, “the”], [28.0s-28.4s, “description”], [28.4s-29.0s, 
“and”], [29.0s-29.1s, "I've"], [29.1s-29.3s, "also"], [29.3s-29.4s, "got"], [29.4s-29.6s, "an"], [29.6s-29.9s, "ice"], [29.9s-30.2s, "image"]…

Video Stream

(c) An example from the Live-WhisperX-526K dataset.

Figure 4. Overview of the Live-WhisperX-526K dataset.

commentary. To address this, we employ active speaker
detection (ASD) [47] to identify and exclude such videos.
For efficiency, we optimize Light-ASD [47] pipeline in face
detection, tracking, and multiprocessing, achieving a 250×
speed-up. As a result, processing a 5-minute video now
takes only 1–1.5 seconds. An ASD removel example is in
Figure 4b. B6) Since these ASR transcripts lack associated
user prompts, we employ GPT-4o [29] to generate a prompt
for each sample. The prompts are crafted to match the style
and intent of the speech transcription without revealing
specific content. With this prompt, we no longer need
pre-ASR applied during SFT.

Finally, we get a high-quality SFT dataset comprising
526K video clips, each paired with word-level timestamped
ASR transcripts and a user prompt. Figure 4c shows an
example in Live-WhisperX-526K dataset.

3.2. Modeling
Training with Dense Interleaving Sequence. As shown
in Figure 5, our model architecture builds upon Qwen2-
VL [80], which integrates a Vision Transformer [21] with
basic dynamic resolution support and uses Qwen2 [91] as
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Figure 5. Modeling Overview of LiveCC. The model processes streaming video frames through a visual encoder to produce visual tokens
while assigning ASR text from corresponding frame intervals as text tokens. The LLM autoregressively predicts text tokens within this
densely interleaved token sequence. To mitigate learning ambiguity, additional context of preceding ASR text or video title is provided
during pre-training. During SFT, the context part is only user query to match the real-world applications.

the LLM backbone. We adopt the base version of Qwen2-
VL, which is pretrained extensively on image-text data but
has limited exposure to video-text pairs. Following stan-
dard practice [54], the model is trained to autoregressively
predict text tokens while treating visual tokens as non-
predictive inputs, as illustrated in Figure 5. Unlike existing
approaches that use either captioning [54] or image-text in-
terleaving [50] style input, we propose to densely interleave
ASR words with video frames along the temporal dimen-
sion. The training sequence is formatted as,

[Con]<Ft:t+k><Wt:t+k><Ft+k:t+2k><Wt+k:t+2k>

...<Ft+n∗k:t+(n+1)∗k><Wt+n∗k:t+(n+1)∗k>,

where [Con] denotes context information of the video
(e.g., prompt, previous ASR, video title), <F> denotes a
frame, <W> denotes the words, t represents the time index
and k represents the time intervals. By default, we use 2
FPS frame rate and k = 1 as the time interval. We in-
corporate video titles and preceding ASR text as contextual
information to enhance text coherence, since ASR text may
start from the middle of a sentence, or use informal, verbal
language. A newline character concatenates the video title
and previous ASR texts if the ASR texts are available.
Sequence Pre-processing. For pre-training, we utilize
the original YouTube ASR transcripts, which employ fixed
timestamps to segment speech into chunks of approximately
2 to 3 seconds. To approximate word-level alignment, we
uniformly distribute each segment’s duration across its con-
stituent words. This heuristic yields reasonably accurate
word-level timestamps across the entire video. In contrast,
during SFT, we leverage WhisperX, which provides precise
word-level timestamps, as detailed in Section 3.1. To dis-
ambiguate the true end-of-sequence (EOS) from temporary
pauses in streaming, we simply use the ellipsis token (“ ...”)

as an special EOS indicator appended to the per-frame text
tokens. For silent frames without corresponding subtitles,
we directly predict this ellipsis token.
Training Strategy. Our model training incorporates two
stages including pre-training and SFT. For the pre-training,
we solely train the model with dense interleaving se-
quences. The objective is to align frame features with the
temporally synchronized ASR words, enabling the model
to capture temporal correlations between frames and lan-
guage. Next, to improve the ability of LiveCC models to
solve a diverse set of downstream tasks, we jointly train the
model with our Live-WhisperX-526K in streaming mode,
general video and image datasets [105] for common caption
or QA. To achieve this, we make the streaming training be
compatible with the Qwen2-VL [80] conversation template.
The details can be found in the supplementary material.
Inference. During inference, our LiveCC model processes
input frames sequentially. To accelerate language decoding,
we cache the Key-Value (KV) pairs of previous prompts,
visual frames, and generated text. For long sequences, we
discard visual tokens every 240 seconds—consistent with
the maximum duration in SFT training—while retaining the
text tokens to prefill the model again.

4. The LiveSports-3K Benchmark

4.1. LiveSports-3K Data Collection

As mentioned in Section 2, we present LiveSports-3K, a
comprehensive benchmark designed for systematic eval-
uation of video understanding models’ capabilities. Un-
like previous sports benchmarks like SoccerNet [61] and
MatchTime [73], which focus on specific sports, our bench-
mark spans a broader range of common sports to en-
sure generalizability. To achieve this, we prompt GPT-4o-
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y-axis) are analyzed, with durations categorized as short, medium, and long. (c) Question Count by Type in the QA track: Questions are
grouped into three query types, with additional tracking of those requiring OCR for each type. (d) Sample CCs and Query Types.

mini [29] to select the ongoing sports videos and classify
sports categories of our Live-WhisperX-526K dataset. We
focused on the top 50 most frequent sports categories and
randomly sampled 12 videos from each category, yielding
a pool of 600 candidate videos covering popular sports.
After collecting candidate videos, we used GPT-4o-mini
to merge ASR transcriptions into semantically coherent
events, recording each event’s start and end timestamps.
Given that ASR transcriptions are not always visually rele-
vant, we recruited English-proficient annotators to filter out
irrelevant events according to three criteria: 1) The event
must last more than 10 seconds; 2) The event clip must
contain ongoing sports action; 3) Most ASR transcriptions
within the event clip should be visually grounded. Events
that failed to meet any of these criteria were discarded. We
curated 416 videos across 49 sports categories (one cate-
gory lack of qualified videos). The category distribution is
shown in Figure 6(a). We further remove these videos from
our training dataset for fair evaluation.

4.2. Crafting LiveSports-3K-CC/QA

LiveSports-3K-CC. Real-time commentary in sports
videos encapsulates rich spatiotemporal semantics. For
instance, the commentary on a football game often de-
scribes attackers, defenders, and their interactions in de-
tail, making it an ideal source for streaming video under-
standing evaluations. Therefore, we developed this track
to assess video comprehension by evaluating the align-
ment between model-generated and groundtruth CCs from
ASR. Note that the data collection process has ensured
that the ASR event transcriptions are visually grounded.

Thus, we directly leverage ASR transcriptions from quali-
fied events as groundtruth. In summary, LiveSports-3K-CC
consists of 1,702 events with high-quality live CCs. Fig-
ure 6(b) presents the distribution of events and word counts
in three duration groups, showing a relatively balanced to-
tal word count (i.e., video count × word count per group)
across groups. Additionally, Figure 6(d) illustrates a sam-
ple event, demonstrating the highly visual-grounded nature
of the ASR-transcribed CCs retained through our filtering.

For evaluation, we prompt the model with the video title
and the preceding CCs of the event, then record the model’s
predictions. Given the challenges of directly assessing dis-
crepancies between the predicted and groundtruth CCs, we
adopt a pairwise comparison approach inspired by Chatbot
Arena [109]. Specifically, for each pair of predictions, we
use GPT-4o as a judge to select the better prediction based
on the ground-truth CCs. The selection criteria include both
stylistic and semantic consistency. The winning rates of dif-
ferent models serve as the ranking metric.

LiveSports-3K-QA. LiveSports-3K-CC offers a valuable
track for assessing video understanding comprehensively.
However, it still lacks a precise criterion for analyzing
model behavior, especially when errors occur. To address
this, we decompose each event into three fundamental el-
ements: (i) When: Captures the temporal context of the
event. (ii) What: Defines the content or action taking place
in the event. (iii) Who: Identifies the participants involved
in the event. By structuring events around these elements,
we enable targeted queries for each element based on the
other two, allowing us to isolate specific areas of weak-
ness that require improvement. Figure 6(c) provides de-
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Video-ASR Sequence LiveSports-3K-CC Video-MME
Win Rate↑ Overall↑ Short↑

Caption (5M) 14.0 61.1 69.4
Streaming (5M) 32.9 61.0 70.1
Caption+Streaming (5M×2) 35.1 60.5 69.0

(a) Training Paradigm during Pre-training.

Context LiveSports-3K-CC Video-MME
Win Rate↑ Overall↑ Short↑

None 14.7 60.7 69.0
Title 24.8 59.7 67.9
Prev. ASR 32.0 61.1 69.7
Title & Prev. ASR 33.8 60.7 69.4
Title || Prev. ASR 32.9 61.0 70.1

(b) Context during Pre-training.

Data LiveSports-3K-CC Video-MME
Win Rate↑ Overall↑ Short↑

1M 29.1 60.6 68.1
2.5M 30.8 60.9 69.1
5M 32.9 61.0 70.1
10M 36.0 58.0 67.6

(c) Pre-training Scalability.

Table 1. Ablation Study in the Pre-training Stage. Blue highlights our default setting. Win Rate indicates the percentage of wins against
GPT-4o-08-06-generated commentary, using ground-truth ASR as the reference. Models in these table are pre-trained on a maximum of 120
frames (60 seconds at 2 FPS), so we did not show results on medium- and long- length videos for Video-MME [23] to avoid misjudgment.
(a) Both caption-style and streaming-style sequence significantly improve QA performance; however, only the streaming-style sequence
yields notable gains in commentary generation. (b) Incorporating previous ASR enhances both commentary and QA. In contrast, simply
adding video titles degrades QA, unless previous ASR is absent (e.g., during 0–60s). (c) Commentary benefits from increased pre-training
data, while QA performance declines beyond 5M examples—likely due to overtraining on the single-source (streaming ASR) data.

tailed examples of these three question types. Additionally,
we recorded whether a question required OCR capabilities,
allowing for an auxiliary evaluation of model performance
on text recognition tasks. This process yielded 1,236 four-
option MCQs across 414 videos, excluding two videos due
to the difficulty of designing appropriate questions. Finally,
we manually removed 62 questions that require speech
recognition, leaving the remaining 1,174 MCQs as the fi-
nal benchmark. This track includes a balanced distribution
of the three query types, with OCR-reliant questions evenly
distributed among them, as shown in Figure 6(b).

5. Experiments

5.1. Experiments Setup
Implemetation Details. We initialize our model with the
Qwen2-VL-7B-Base checkpoint [80], following most of
the configurations provided in its HuggingFace release,
with minimal modifications to improve efficiency. Specif-
ically, during ablation studies of pre-training, we reduce
the maximum number of frames from 768 to 120 and
shorten the visual context length from 128K to 16K to-
kens. During formal pre-training and SFT, we increase the
frame limit to 480 and extend the visual context length to
24K, while slightly lowering the minimum spatial resolu-
tion from 128 × 28 × 28 to 100 × 28 × 28. Pre-training
ablation studies are conducted on the 30∼60s Live-CC-
1∼10M dataset. The formal pre-training is in 30∼240s
Live-CC-5M. The SFT stages uses our Live-Whisper-526K
and LLaVA-Video-178K [105] datasets (without the train-
ing set of ActivityNetQA [30], Next-QA [85], and Percep-
tionTest [66]). We implement the training engine using Py-
Torch [65] and Transformers [84]. The batch size for pre-
training and SFT is 512 on 128 GPUs, with a learning rate
of 2e-5 for pre-training and 1e-5 for SFT.
Evaluation Protocols and Metrics. For QA bench-
marks, we evaluate our models on VideoMME [23],
MVBench [45], OVOBench [46], and our newly introduced
LiveSports-3K-QA. For all models, we calculate the logits

of multiple choices to select answers, due to the instruction
following capability of streaming ASR pre-trained model
has been lost. We observe this does not make difference
with generation-based method [101] for SFT models, but
the evaluation is much faster.

The evaluation on LiveSports-3K-CC is like a condi-
tioned video captioning task, where the condition comprises
the video title and previous ASR text. With this condition,
the model’s task is to complete the ASR text based on the
given video clip. Since most video LLMs lack real-time
streaming capabilities, we evaluate them using a general
video captioning approach, processing all video clip frames
at once. In contrast, our model supports real-time infer-
ence, enabling us to generate captions on a frame-by-frame
basis and then concatenate them into a complete response
for evaluation. Due to the challenges of directly assessing
open-ended text generation, we employ a pairwise compe-
tition approach, similar to Chatbot Arena [109]. We use
GPT-4o [29] as the fixed competition opponent. In each
competition (tested model vs. GPT-4o), we also use GPT-
4o [29] acts as the judge, selecting the response that best
aligns both stylistically and semantically with the ground
truth ASR transcriptions. The evaluation metric is the win
rate, which is defined as the proportion of times the judge
favors our model over the baseline. The evaluation also in-
volves latency comparison, which we discuss in the supple-
mentary material.

5.2. Ablation Study
Pre-training Paradigm. We first investigate the impact of
different pre-training paradigms on model performance us-
ing the following baselines: (1) Caption, where all ASR
text is concatenated and appended after the visual input
frames; (2) Streaming, where the model is trained on se-
quential frame inputs sampled at 2 FPS, predicting ASR
text incrementally after receiving every 2 frames; and (3)
Caption+Streaming, where each training sample contributes
to both captioning and streaming objectives. As shown in
Table 1a, both caption and streaming pre-training achieve
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Pre-training SFT LiveSports-3K VideoMME

All Duration Perception Recognition Reasoning OCR Count ISCC QA OCR Who When What S M L Te Sp At Ac Ob Te Sp Ac Ob

Qwen2-VL-7B-Base LV178K 16.7 67.0 66.1 70.6 57.6 71.0 62.7 74.7 62.4 51.1 74.5 61.1 73.4 64.5 70.1 49.7 80.4 49.8 57.0 76.3 45.1 76.2
LV178K+Live526K 33.7 67.1 66.8 69.8 57.0 72.3 63.6 74.4 63.1 53.2 74.5 57.4 75.2 66.5 70.1 49.7 76.8 54.4 57.5 72.7 44.4 78.9

(a) Ablation study in the SFT data.

Pre-training SFT LiveSports-3K VideoMME

All Duration Perception Recognition Reasoning OCR Count ISCC QA OCR Who When What S M L Te Sp At Ac Ob Te Sp Ac Ob

Qwen2-VL-7B-Base - 16.3 64.0 64.8 65.2 57.9 67.3 63.4 73.2 63.2 53.9 72.7 63.0 76.1 63.9 67.2 44.6 78.6 57.5 61.5 72.7 39.6 80.2
LiveCC-7B-Base - 43.2 57.9 61.4 59.4 50.7 61.9 61.4 68.1 58.9 57.3 65.5 63.0 64.9 60.7 61.0 50.3 80.4 56.1 61.5 61.2 42.9 82.4

Qwen2-VL-7B-Base LV178K+Live526K 33.7 67.1 66.8 69.8 57.0 72.3 63.6 74.4 63.1 53.2 74.5 57.4 75.2 66.5 70.1 49.7 76.8 54.4 57.5 72.7 44.4 78.9
LiveCC-7B-Base LV178K+Live526K 41.5 66.8 66.4 71.4 56.1 70.8 64.1 74.8 63.9 53.7 74.5 64.8 74.3 66.1 68.6 50.3 76.8 52.3 59.5 77.0 46.3 79.9

(b) Ablation study in the SFT model initialization.

Table 2. Ablation studies in the SFT stage. LV178K denotes the datasets used in LLaVA-Video-178K [105]. Live526K refers to our
proposed Live-WhisperX-526K. LiveSports-3K CC denotes the win rate against commentary generated by LLaVA-Video-72B. LiveSports-
3K QA is the overall accuracy includes OCR, Who, When, What questions. Te, Sp, At, Ac, Ob, IS denotes temporal, spatial, attribute,
action, object, information synopsis, respectively.

Model (7B/8B) VideoMME MVBench OVOBench
w/o sub w sub Avg. Avg. RTVP BT FAR

LongVA-7B [103] 52.6 54.3 - - - - -
InternVL2-8B [17] 54.0 56.9 66.4 50.2 60.4 43.4 46.6
LLaVA-OV-7B [41] 58.2 61.5 56.7 52.7 64.0 43.7 50.5
Oryx-7B [56] 58.3 62.6 63.9 - - - -
mPLUG-Owl3-7B [94] 59.3 68.1 59.5 - - - -
LongVU-7B [75] 60.6 - 66.9 46.7 57.6 35.0 47.5
MiniCPM-v2.6 [92] 60.9 63.6 - - - - -
Qwen2-VL-7B-Instruct [80] 63.3 69.0 67.0 50.4 56.0 46.5 48.7
LLaVA-Video-7B [106] 63.3 69.7 58.6 52.9 63.5 40.4 54.8
LiveCC-7B-Instruct 64.1 70.3 62.8 59.8 59.1 68.9 51.5

Table 3. Comparison of QA accuracy (%) across VideoMME [23],
MVBench [45], OVOBench [46]. We only show results before the
CVPR 2025 submission period (Nov, 2024).

strong general video QA performance (exceeding 60) on the
Video-MME benchmark [23], outperforming many exist-
ing SFT models. Notably, the streaming-based pre-training
yields significantly better results on the commentary task
compared to caption-based pre-training, highlighting the ef-
fectiveness of our proposed paradigm.

Context Input for Pre-training. In Table 1b, we observe
that providing contextual information, particularly the pre-
vious ASR text, significantly improves commentary gen-
eration. This improvement stems from the fact that a 60-
second segment can break the continuity of ASR, making it
difficult to interpret the current segment without prior con-
text. While incorporating the video title as additional con-
text offers benefits on commentary, it slightly degrades per-
formance on VideoMME. We attribute this to potential in-
formation leakage, which may make training easier. To han-
dle the cases where no previous ASR is available (e.g., clips
at the beginning of a video), we adopt a hybrid strategy:
“Title || Prev. ASR”, which includes the video title only
when previous ASR is unavailable. This approach strikes
the best balance between enhancing commentary generation
and maintaining general video QA performance.

Size Model LiveSports-3K ↑
Live? CC Overall OCR Who When What

- GPT-4o-08-06 [29] ✗ ❀ 72.2 74.0 75.8 63.4 75.4
Gemini-1.5-Pro [3] ✗ 52.8 61.8 61.7 59.9 51.6 70.7

72B

Qwen2-VL-72B-Instruct [80] ✗ 17.0 70.8 67.8 74.6 61.2 74.6
VideoLLaMA-2-72B [18] ✗ 24.8 62.4 55.7 63.6 54.3 67.3
LLaVA-OV-72B [41] ✗ 29.2 68.7 61.7 71.1 61.5 71.8
Qwen2.5-VL-72B-Instruct [6] ✗ 30.4 73.7 70.1 75.7 69.3 75.3
LLaVA-Video-72B [106] ✗ 35.0 71.1 65.1 74.1 64.8 73.3

7B

Qwen2-VL-7B-Instruct [80] ✗ 9.3 65.8 65.8 67.9 58.8 69.2
Qwen2.5-VL-7B-Instruct [6] ✗ 17.3 67.0 64.8 70.3 60.6 69.0
InternLM-XC2.5-7B [102] ✗ 17.3 59.3 56.7 60.7 54.9 61.3
Qwen2.5-Omni-7B [87] (Thinker) ✗ 17.6 66.8 66.1 70.0 60.0 69.2
LLaVA-Video-7B [106] ✗ 27.1 66.4 64.1 72.7 56.4 68.6
LLaVA-OV-7B [41] ✗ 27.7 63.4 60.7 67.4 53.7 67.1
Qwen2-VL-7B-LiveCCInstruct ✓ 33.7 67.1 66.8 69.8 57.0 72.3
LiveCC-7B-Instruct ✓ 41.5 66.8 66.4 71.4 56.1 70.8
LiveCC-7B-Base ✓ 43.2 57.9 61.4 59.4 50.7 61.9

Table 4. Win rate on the LiveSports-3K-CC track and QA accuracy
on the LiveSports-3K-QA track. GPT-4o-08-06 is used as the ❀

Baseline for the commentary win rate comparison due to its strong
performance. For a fair comparison, all Qwen models [6, 80, 87]
and our models are evaluated on a maximum of 480 frames. The
Qwen models did not perform as expected, as they tend to simply
caption the video rather than follow the preceding ASR context to
continue the video commentary.

Pre-training Scalability. Table 1c presents the results of
scaling up the pre-training data. We observe that com-
mentary performance consistently improves with larger data
size. However, QA performance begins to decline be-
yond the 5M scale, likely due to the use of single-source
(streaming commentary) data during pre-training. Since
our primary goal is to demonstrate the effectiveness of the
streaming-based pre-training, we defer the use of multi-
source data to the SFT stage.

5.3. Overall Results
In Table 3 and Table 4, we compare the performance
of various models on general QA, streaming QA and
our LiveSports-3K benchmarks, including advanced pro-
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Pre-trained + SFT Model
Prediction:
60s: The bear is on the prowl.
61s: It's
62s: looking for food.
63s: But it's
64s: not the only one.
65s: Two other bears
66s: are in a fight.
67s: They're over eight
68s: feet tall.
69s: They weigh over 1,500
70s: pounds.
71s: And they're both
72s: hungry.
73s: They're looking for
74s: a meal.
75s: And they're looking for
76s: a fight.
77s: This is a battle
78s: royale.
79s: And the winner will
80s: be the last bear
81s: standing.
82s: This is Animal
83s: Fight Night.
84s: And this is Mortal
85s: Combat.
86s: The two bears
87s: have been fighting for
88s: hours. They’re
89s: both exhausted.
90s: They have 42
91s: teeth each
92s: They're sharp, 
…

Pre-trained Model
Prediction:
60s: this
61s: is a
62s: grizzly bear
63s: and this
64s: is a grizzly
65s: bear fight
66s: standing eight
67s: feet tall and
68s: weighing up
69s: to 1500
70s: pounds grizzly
71s: bears are the
72s: largest land
73s: carnivores in
74s: north america
75s: and they’re
76s: not afraid to
77s: to fight
78s: for their
79s: food or
80s: their territory
81s: or their
82s: lives
83s: these two
84s: bears are fighting
85s: over a female
86s: the male on
87s: the right is
88s: the aggressor he’s
89s: wants to mate
90s: with her and
91s: he's using his
92s: 42 teeth
…

Snapshot

62s

66s

69s

92s

Snapshot

60s

67s

69s

90s

Figure 7. Comparison of pre-trained and instruction tuning
enhanced model’s predictions on the same video. This ex-
ample is sourced from Video-MME [23], with the YouTube ID
whksDmTR9YE featuring animal fights.

prietary models, SOTA open-source 72B models, and
SOTA open-source 7B models. Despite being initialized
from Qwen2-VL-7B-Base, our LiveCC-7B-Instruct out-
performs Qwen2-VL-7B-Instruct on the general QA, i.e.,
VideoMME (64.1 vs. 63.3) and the streaming benchmark,
i.e., OVOBench (59.8 vs. 50.4). This demonstrates the
strong generalization capabilities of our dataset and training
method. In our proposed LiveSports-3K benchmark, we ob-
serve that our three models achieve significant advantages
in commentary while maintain competitive on QA, which
demonstrates the effectiveness of our method.

5.4. Streaming Commentary Capabilities
Figure 7 shows that the pre-trained model can already
demonstrate impressive real-time video commentary capa-
bilities. With SFT, the model further improves formatting
(e.g., punctuation, case) and coherence. More examples are
provided in the supplementary material.

6. Conclusion
In this paper, we investigated the large-scale training of
video LLMs using ASR transcripts. We proposed a novel
streaming training approach that densely interleaves fine-
grained ASR words with their corresponding video frames
based on timestamps. Our methodology involved the col-
lection of two datasets: Live-CC-5M for pre-training and
Live-WhisperX-526K for instruction tuning. We then de-
veloped our streaming pre-training approach, introducing a
series of innovative training and inference strategies. Addi-
tionally, we designed LiveSports-3K, with two evaluation
tracks, LiveSports-3K-CC and LiveSports-3K-QA, which
are specifically tailored to assess the model’s streaming ca-
pabilities. Our extensive experiments demonstrate that our
model can perform low-latency commentary for streaming
videos and general question answering for holistic video un-
derstanding in state-of-the-art performance simultaneously.

In future work, we seek methods to train multimodal omni
models in streaming.
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ran Narang, Aurélien Rodriguez, Robert Stojnic, Sergey

Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. arXiv:2307.09288, 2023. 1

[80] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution.
arXiv:2409.12191, 2024. 2, 4, 5, 7, 8, 15

[81] Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo
Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan Chen,
Yaohui Wang, et al. Internvid: A large-scale video-
text dataset for multimodal understanding and generation.
arXiv:2307.06942, 2023. 2

[82] Yueqian Wang, Xiaojun Meng, Yuxuan Wang, Jianxin
Liang, Jiansheng Wei, Huishuai Zhang, and Dongyan Zhao.
Videollm knows when to speak: Enhancing time-sensitive
video comprehension with video-text duet interaction for-
mat, 2024. 2, 3

[83] Yuxuan Wang, Cihang Xie, Yang Liu, and Zilong Zheng.
Videollamb: Long-context video understanding with recur-
rent memory bridges. arXiv:2409.01071, 2024. 2, 3

[84] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
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7. Demo
This section showcases four demo videos to demonstrate
the capability of our LiveCC-7B-Instruct to provide real-
time commentary in real-world videos across different do-
mains, including sports (football), science (astronomy),
news (weather forecast), and instructional (computer repair)
videos. As illustrated in Figure 10-13, in the first demo,
our LiveCC-7B-Instruct model correctly recognizes all ex-
act penalty timings, highlighting its strong temporal per-
ception abilities. By leveraging the extensive world knowl-
edge gained from watching millions of YouTube videos, our
model accurately reports the name of the related player. The
second demo showcases the model’s ability to comment be-
yond sports by precisely presenting astronomy knowledge
and demonstrating good OCR capability to read large num-
bers. The third demo further reveals its fine-grained tempo-
ral understanding capability, as evidenced by its real-time
commentary on subtle changes in weather maps. The final
demo demonstrates that our model is also capable of gener-
ating a tutorial to guide users, revealing its potential to serve
as a real-time assistant.

8. Implemetation Details
8.1. Prompt Template
In this section, we detail the prompt designs used during
the pre-training, instruction tuning, and inference stages.
As shown in Figure 8(a) and (b), the video title and pre-
viously transcribed ASR text are provided as contextual in-
formation during pre-training but are omitted during SFT.
For the first round of vision token extraction, we use a 3-
second video clip, followed by 1-second clips in subsequent
rounds. Given a frame rate of 2 FPS, this corresponds to 6
and 2 frames, respectively. For QA-style data used exclu-
sively in SFT, illustrated in Figure 8(c), we adopt the input
format of Qwen2-VL-Instruct [80], which is also used dur-
ing evaluation. However, for real-time commentary evalua-
tion, we follow the format in Figure 8(d), where the video
title and previous ASR transcripts are included to ensure
consistency with other non-streaming baselines.

8.2. Win Rate Computation on LiveSports-3K
In this section, we present the detailed process for
computing the win rate on LiveSports-3K-CC. To start,
we categorize the models into two groups based on
their inference schemes: i) Clip-wise caption mod-
els, including GPT-4o [29], Gemini-1.5-Pro [3], LLaVA-
OV-7/72B [41], LLaVA-Video-7/72B [106], Qwen2-

VL-7/72B-Instruct [80], Qwen2.5-VL-7/72B-Instruct [6]
and Qwen2.5-Omni-7B [87]. ii) Frame-wise stream-
ing model, i.e., our LiveCC-7B-Base, Qwen2-VL-7B-
LiveCCInstruct, LiveCC-7B-Instruct.

For clip-wise caption models, we directly input the over-
all event clips, perform a one-time generation, and use the
generated response as the commentary. To ensure stylistic
consistency and fair evaluation, the same prompt context as
that shown in Figure 8(d) is applied across all models. We
use the video commentary from GPT-4o-08-06 [29] serves
as the baseline for comparison with other models. For
our models, we adopt streaming inference shown in Fig-
ure 8(d), where commentary is generated frame by frame.
The generated tokens are then concatenated to form the
complete commentary, which is evaluated for quality.

For evaluation, we also prompt GPT-4o-08-06 [29] to as-
sess whether a given commentary surpasses that of GPT-
4o-08-06. The evaluation is based on two key criteria: (i)
Semantic Alignment, i.e., consider which text conveys the
same meaning, details, and key points as the groundtruth
ASR transcript, with minimal deviation. (ii) Stylistic Con-
sistency, i.e., assesses which text maintains a tone, word
choice, and structure similar to the ground-truth transcript.
The overall prompt is written as:

You are an expert in video commentary. Your task
is to review two commentaries (Commentary A and
Commentary B), and select the one that better
aligns with the human commentary. You should
consider the criteria:
1. Semantic Alignment: The commentary should
convey the same meaning, details, and key points
as the human commentary.
If the above criteria is not enough to judge,
then consider:
2. Stylistic Consistency: The commentary should
maintain a tone, word choice, and structure
similar to the human commentary.
---Commentary A---
{a_pred}
----------
---Commentary B---
{b_pred}
----------
---Human Commentary---
{gt_asr}
----------
Your response should be "Commentary A is better
aligned with the human commentary" or "Commentary
B is better aligned with the human commentary".

The final win rate is calculated as the proportion of in-
stances where GPT-4o [29] selects the model’s response
over the baseline. To mitigate positional bias in GPT’s re-
sponses, each prompt is evaluated twice with the positions
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(b) SFT CM

<|im_start|>user
0.0-3.0s[VISUAL TOKENS of 6 frames] 
[PROMPT]<|im_end|>
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
3.0-4.0s[VISUAL TOKENS of 2 frames] 
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
4.0-5.0s[VISUAL TOKENS of 2 frames]
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
5.0-6.0s[VISUAL TOKENS of 2 frames]
<|im_start|>assistant
[WORDS] …<|im_end|>…

(a) Pre-training CM

<|im_start|>user
0.0-3.0s[VISUAL TOKENS of 6 frames] 
[VIDEO TITLE] (if PREV. ASR not exists)
[PREV. ASR] (if exists)<|im_end|>
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
3.0-4.0s[VISUAL TOKENS of 2 frames] 
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
4.0-5.0s[VISUAL TOKENS of 2 frames]
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
5.0-6.0s[VISUAL TOKENS of 2 frames]
<|im_start|>assistant
[WORDS] …<|im_end|>…

(c) SFT/Evaluation QA

<|im_start|>user
[VISUAl TOKENS OF ALL FRAMES] 
[QUESTION]<|im_end|>
<|im_start|>assistant
[ANSWER]<|im_end|>

(d) Evaluation CM

<|im_start|>user
0.0-3.0s[VISUAL TOKENS of 6 frames] 
This is a video titled with [VIDEO TITLE]
Here is previous commentary of the video: 
[PREV. ASR]
Please continue to comment the video.<|im_end|>
<|im_start|>assistant
[WORDS] …<|im_end|>
<|im_start|>user
3.0-4.0s[VISUAL TOKENS of 2 frames]<|im_end|>
…

Figure 8. The prompts used during the pre-training instruction-tuning (aka. SFT) stages. CM represents commentary, QA denotes question-
answering. For pre-training and instruction-tuning, the previous ASR texts are concatenated to form the context for the live commentary
task if they are available. Otherwise, the context is formed by the video title. These contexts are masked during loss calculation. Note that
QA data is incorporated exclusively during the instruction-tuning stage. As for inference, we remove the groundtruth in the prompts, i.e.,
the words followed by a frame or the answer to a multiple-choice question.

Model Latency Input Inf. Type

LLaVA-Video-72B [106] 20.51s Clip Captioning
LLaVA-Video-7B [106] 5.62s Clip Captioning
LiveCC-7B-Instruct 0.17s Frame Streaming

Table 5. The response latency comparison between LLaVA-Video-
7/72B and our LiveCC-7B. Inf. is short for Inference.

1973	AAU	Indoor	Track	&	Field	Championships	-	Marty	Liquori	in	the	Men's	Mile

Begin:	

66.653s

End:	

87.395s

But	it's	Reggie	McAfee	leading,	easily	nice,	light,	compact	sort	of	runner	from	Howell-Michael,	

who's	a	very	hard	man	to	beat,	now	in	the	US	Marine	Corps	at	QuanLco.	There's	MarLn	Licori	

in	third	place.	Happy,	I	think,	to	feel	that	he's	back	at	the	top	of	the	world	rankings.
Groundtruth	ASR

And	it's	McAfee	who	leads	the	ûeld	through	the	ûrst	lap.	He's	a	very	strong	runner,	but	he's	

not	a	great	tacLcian.	He's	not	going	to	be	able	to	hold	this	pace	for	long.	And	in	second	place,	

it's	Howell-Michael.	And	in	third,	it's	Licori.	And	in	fourth,	it's	Shorikofsky.

The	race	is	underway,	and	the	runners	are	jockeying	for	posiLon.	Licori	is	right	behind	McAfee	

and	Howell-Michael,	looking	strong	and	focused.	Shorikofsky	is	struggling	a	bit	at	the	back,	

trying	to	ûnd	his	way	through	the	pack.	The	crowd	is	on	their	feet,	cheering	on	the	athletes	as	

they	round	the	ûrst	lap.	Licori's	form	is	impeccable,	and	he	looks	like	he's	conserving	his	

energy	for	a	ûnal	sprint.	McAfee	is	seSng	a	fast	pace,	but	Licori	seems	comfortable	in	third	

place.	The	tension	is	building	as	we	approach	the	halfway	mark	of	the	race.

LLaVA-Video-72B

Knowledge:	correct

Tone:	third	person

Speak	Pace:	too	fast

LiveCC-7B

Knowledge:	correct

Tone:	ûrst	person

Speak	Pace:	human	alike

Figure 9. The comparison between the commentary generated by
LLaVA-Video-72B and our LiveCC-7B-Instruct.

of the tested model and baseline text swapped.

9. Additional Experiments

9.1. Response Latency
To highlight the efficiency of our streaming model, we
present the response latency of LLaVA-Video-7B/72B

alongside our model in Table 5. Response latency is de-
fined as the time a user waits to see the model’s output, a
critical factor affecting user experience. Since the LLaVA-
Video series are trained in a captioning style, requiring a
full clip as input rather than a single frame, their response
latency is significantly higher than that of our model. No-
tably, LiveCC not only achieves lower latency but also de-
livers high-quality commentary (see Table 4).

9.2. Commentary Quality
We analyzed the quality of the generated content, as shown
in Figure 9. Benefiting from training on millions of ASR-
transcribed videos, our model produces commentary that
is more aligned with human preferences in terms of tone
and speaking pace, while maintaining accurate event un-
derstanding. In contrast, the LLaVA-Video-72B, although
capable of correctly describing the event, falls short in em-
ulating human-like commentary.
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(a) Video Time: 8.6s

(b) Video Time: 30.3s

(c) Video Time: 51.2s

(d) Video Time: 77.2s

Figure 10. Real-time video commentary demo on unseen YouTube video (MCWJNOfJoSM). The original YouTube title is “Argentina v
France: Full Penalty Shoot-out — 2022 #FIFAWorldCup Final”. We only give a part of YouTube title “Full Penalty Shoot-out — 2022
#FIFAWorldCup Final” as prompt to avoid information leakage.
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(a) Video Time: 2.6s

(b) Video Time: 13.3s

(c) Video Time: 31.6s

(d) Video Time: 45.0s

Figure 11. Real-time video commentary demo on unseen YouTube video (lcZTcfdZ3Ow). We give the YouTube title “The Planets In
Our Solar System” as prompt.
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(a) Video Time: 4.3s

(b) Video Time: 24.8s

(c) Video Time: 43.8s

(d) Video Time: 59.8s

Figure 12. Real-time video commentary demo on unseen YouTube video (8XajZdrCDsk). The original YouTube title is “21/11/24 -
Wintry weather perservering - Evening Weather Forecast UK – Met Office Weather”. We only give “21/11/24 - Wintry weather perserver-
ing” as prompt to avoid information leakage.
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(a) Video Time: 4.6s

(b) Video Time: 15.6s

(c) Video Time: 44.0s

(d) Video Time: 72.8s

Figure 13. Real-time video commentary demo on unseen YouTube video (115amzVdV44). We give the YouTube title “How To Fix a
Water Damaged Laptop” as the prompt.
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