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Abstract

Action anticipation from an ego-centric perspective plays a
crucial role in embodied intelligence and vision-based as-
sistants. While previous works have extensively explored
single-agent ego-centric action anticipation, multi-agent
scenarios—where collaboration among multiple individu-
als represents a more common real-world situation—have
received significantly less attention. In multi-agent settings,
since agents collaborate to complete tasks, their actions
exhibit both momentary and cross-temporal correlations,
making it essential to leverage these relationships effec-
tively. Our work, InteractFormer, focuses on multi-agent
scenarios and models the inherent correlations that exist
when multiple agents cooperate to complete tasks, jointly
predicting future actions across all agents. By capturing
the relationships between agents and incorporating visual
cross attention, our approach enables more accurate an-
ticipation of collaborative behaviors. Extensive quantita-
tive experiments across various indoor tasks show that our
method outperforms state-of-the-art techniques. Moreover,
attention visualizations highlight the effectiveness and in-
terpretability of our interaction modeling approach, offer-
ing valuable insights into collaborative behavior anticipa-
tion.

1. Introduction

Human Action Anticipation, the task of predicting future ac-
tions before they are fully executed, is crucial for enhanc-
ing the responsiveness, safety, and interactivity of intelli-
gent systems [22]. By enabling proactive decision-making,
action anticipation plays a vital role in applications such
as autonomous driving, human-robot collaboration, smart
surveillance, and human-computer interaction. [8, 18, 27]

Single-agent action anticipation has seen extensive
progress enabled by a variety of large-scale egocentric
and third-person datasets such as EPIC-KITCHENS[6],
EGTEA Gaze+[24], 50-Salads[32], and Ego4D[16], which

provide rich annotations of temporally aligned actions.
Early methods relied on RNN-based architectures, includ-
ing LSTMs and GRUs, to model the sequential structure of
video observations [1, 2, 9, 11, 23, 25]. More recent ap-
proaches leverage Transformer-based architectures to cap-
ture long-range spatial-temporal dependencies [12, 13, 15,
20, 31, 34, 35]. With the emergence of foundation mod-
els, concurrent works have adopted large language mod-
els (LLMs) and video-language models (VLMs) to gener-
ate diverse and temporally plausible action sequences [21,
28, 33, 37, 38]. Beyond architectural improvements, there
is a growing trend toward exploiting structured or semantic
information: some methods construct relational graphs to
model interactions between actors and objects, while some
explicitly detect interactable objects or model high-level
goals to better guide anticipation. These diverse lines of re-
search collectively contribute to the evolving landscape of
single-agent action anticipation [3, 4, 17, 26, 29, 30, 36].
Multi-Agent Action Anticipation, however, remains under-
explored, with significantly fewer datasets [19] and special-
ized methods. Unlike the single-agent setting, anticipating
the actions of multiple interacting agents introduces addi-
tional challenges such as modeling inter-agent dependen-
cies, joint intention understanding, and social plausibility.
Only a handful of recent works explicitly address multi-
agent anticipation, and they often rely on adaptations of
single-agent models without explicitly modeling the rela-
tional among agents [34]. This reveals a significant gap in
current research and underscores the need for more dedi-
cated benchmarks and modeling approaches tailored to the
multi-agent setting.

To address this gap, we propose InteractFormer, a
model designed to capture both within-timestep and across-
timestep interactions among agents, and to jointly predict
future actions of all agents. Specifically, as shown in Fig.
1, we introduce a cross-agent visual attention module that
operates across the agent dimension at each time step. In-
tuitively, interactions between agents are often most di-
rectly reflected in the visual domain—for example, through
gaze, gesture, or object manipulation—and raw visual in-



Figure 1. Overview of InteractFormer. Given video inputs from multiple agents, the model first applies an agent visual cross-attention
module to capture spatial interactions across agents at each time step. The fused features are then processed by a temporal cross-attention
module to capture temporal dynamics, enabling joint prediction of future actions.

puts provide richer spatial context than pre-extracted fea-
tures. Our attention mechanism leverages this, and its at-
tention heatmaps offer interpretable insights into how the
model attends to different agents in context.

The output of this visual module is then fused with video
features extracted by a pretrained backbone, such as I3D
[5]. We further apply a temporal cross-attention module
along the time axis. Since each timestep’s features have al-
ready been enriched by multi-agent visual interaction, this
temporal module effectively captures cross-agent, cross-
time correlations. Through this two-stage pipeline, Interact-
Former models both simultaneous and temporally-evolving
interactions among agents, enabling accurate joint future
action prediction.In summary, our main contributions are as
follows:

• We address the multi-agent action anticipation task by
modeling inter-agent interactions, both within and across
time, via a simple yet effective architecture, Interact-
Former, that incorporates structured attention over raw vi-
sual inputs and temporal sequences.

• Extensive experiments demonstrate that our method sig-
nificantly outperforms prior baselines in multi-agent set-
tings.

• The cross-agent attention module yields interpretable and
meaningful patterns in its learned attention maps.

2. Method

2.1. Problem Formulation
We follow most single-agent action anticipation works and
define our objective as predicting the future action of agents
(consisting of verb and noun) at time tinterval after observing
video inputs of length tobs.

In our work, we jointly predict the future actions of
all agents using the inputs from all agents simultaneously.

Formally, given the ego-centric video observations V =
{V1, V2, . . . , Vtobs} from multiple agents, we aim to pre-
dict their future actions A = {a1, a2, . . . , aN} at time
tobs + tinterval, where N is the number of agents and each
action ai = (vi, ni) consists of a verb vi and a noun ni.

2.2. InteractFormer
As illustrated in Fig. 1, our proposed model consists of two
core components designed to capture spatial and temporal
interaction patterns among agents: an Agent Visual Cross-
Attention module and a Temporal Cross-Attention module.

The first module explicitly models interactions among
agents at each time step by applying cross-attention over
raw visual inputs. The second module builds on these en-
riched representations and models the temporal evolution of
inter-agent dynamics.

These two stages form a sequential pipeline that first en-
codes multi-agent spatial interactions, then captures their
temporal evolution, ultimately allowing the model to jointly
predict the future actions of all agents.
Agent Visual Cross-Attention: Given ego-centric video
inputs V ∈ RB×N×T×3×H×W , where B is the batch size,
N is the number of agents, and T is the number of frames,
we first extract spatial visual tokens for each agent indepen-
dently via a shared patch embedding:

X
(t)
i = PatchEmbed(V (t)

i ) ∈ RP×d

where P is the number of patches per frame and d is the
embedding dimension.

At each time step t, we compute attention for agent i over
the visual tokens of all agents at the same frame. Specifi-
cally, for each agent i, its query Qi is obtained from its own
patch tokens X

(t)
i , while the key and value matrices K,V

are constructed by concatenating the patch tokens from all
agents:



mAP ↑ / Top-1 Acc. ↑
Method 1×1 1×2 2×1 2×2

Verb Noun Verb Noun Verb Noun Verb Noun

I3D [19] 27.7 / 30.5 23.3 / 38.9 21.1 / 25.6 13.6 / 28.9 18.0 / 24.8 16.6 / 23.3 18.7 / 22.5 14.0 / 25.1
RULSTM [9] 36.9 / 35.4 28.9 / 41.4 24.2 / 29.3 16.2 / 30.4 24.7 / 34.7 20.0 / 26.2 22.8 / 29.7 17.5 / 27.0

LSTR [35] 48.6 / 43.9 37.6 / 50.8 37.1 / 39.2 24.9 / 39.3 32.4 / 41.8 24.9 / 33.8 30.6 / 39.3 22.0 / 34.6
HiMemFormer [34] 48.0 / 44.6 38.1 / 51.5 37.2 / 39.8 25.4 / 40.1 32.4 / 41.7 24.6 / 32.9 30.8 / 39.6 22.6 / 34.2

Ours 49.4 / 45.5 37.9 / 52.0 38.3 / 39.6 25.6 / 40.3 36.1 / 44.4 27.6 / 35.6 33.4 / 40.3 24.8 / 36.5
Ours w/o TPV input 48.4 / 45.2 37.9 / 50.2 38.2 / 39.5 25.3 / 39.3 34.9 / 43.6 27.0 / 34.7 31.5 / 39.4 23.8 / 35.1

Ours w/o agent visual attention 47.9 / 44.2 38.1 / 51.5 36.5 / 39.6 24.9 / 40.0 32.3 / 40.1 24.1 / 32.0 30.5 / 37.9 22.3 / 34.1
Ours agent feature attention 49.8 / 45.7 38.3 / 51.9 37.8 / 39.8 25.5 / 38.8 35.5 / 43.7 27.2 / 33.6 32.8 / 40.0 24.4 / 34.8

Table 1. Performance of different methods on the LEMMA dataset [19]. We report the mAP and Top-1 Acc. across four scenarios described
in Section 3.1. All results are averaged over five runs. We consider mAP to be a more reliable metric, as the distribution of verbs and
nouns in the ground truth is imbalanced.

Qi = WQX
(t)
i
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[
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]
We then compute standard scaled dot-product attention

with h heads:

Attention(Qi,K, V ) = softmax

(
QiK

⊤√
d/h

)
V

The updated tokens are passed through a feed-forward
network and residual layers, and the resulting patch tokens
are aggregated (e.g., by average pooling) to yield a visual
representation z

(t)
i ∈ RD for each agent at each time step.

This cross-agent attention mechanism enables each
agent to selectively attend to the relevant visual features of
all others, dynamically learning their interactions from raw
visual input.

Finally, we fuse the feature sequence F ∈ RB×N×T×D

(e.g., extracted by a pretrained I3D model [5]) and the out-
put of the visual cross-attention module V ∈ RB×N×T×D

via element-wise addition:

F′ = F+ Z

This representation is then used as input to the subse-
quent temporal modeling stage.
Temporal Cross-Attention: Given the fused representa-
tion F′ ∈ RB×N×T×D from the previous stage, we reshape
the input per agent and apply multi-head self-attention
across the temporal dimension. Each agent’s feature se-
quence {f ′(1), . . . , f ′(T )} is treated as a set of tokens, and
standard attention with residual connections and a feed-
forward network is used to capture temporal dependencies.

This module enables each agent to reason over the tem-
poral evolution of not only its own behavior but also its in-
teractions with others. Since the input features already en-

code inter-agent visual context, the temporal attention mod-
els how these cross-agent relationships develop over time,
thereby capturing motion patterns, coordination cues, and
short-term intention dynamics in a multi-agent setting.

3. Experiments
3.1. Experimental Setup
We validate our method using the LEMMA dataset [19].
LEMMA contains 324 multi-agent activity videos captured
from both third-person view (TPV) and first-person view
(FPV) of each agent, with well-annotated compositional
atomic actions. The dataset is organized into four scenar-
ios: single-agent single-task (1 × 1), single-agent multi-
tasks (1 × 2), multi-agent single-task (2 × 1), and multi-
agent multi-tasks (2 × 2) videos. Following previous works
[6, 7, 10, 14, 34, 35], we decompose action prediction into
verb and noun prediction, and evaluate performance using
mean Average Precision (mAP) and Top-1 Acc. metrics.

3.2. Implementation Details
We set the observation duration tobs to 16 seconds and the
anticipation interval tinterval to 1 second. Following prior
work, we use a pretrained I3D model [5] as the video fea-
ture extractor. As for the input, we use the TPV and all
agents’ FPVs as the input to the agent channel. All atten-
tion modules in the model use 8 heads and a hidden size of
1024. For the visual cross-attention module, the patch size
is set to 32. We train the model using the AdamW optimizer
with a constant learning rate of 5 × 10−5 and a weight de-
cay of 5× 10−3. All experiments are conducted on a single
NVIDIA RTX 6000 GPU.

3.3. Results and Discussion
Quantitative Results: We compare our method with I3D
baseline provided in LEMMA [5, 19], single-agent RNN-
based and Transformer-based action anticipation methods
[34, 35]. Note that LSTR[35] and HiMemFormer[34] are



online models that see ground-truth labels after each pre-
diction. We apply their methods to our offline task, and
as expected, their performance is noticeably lower than re-
ported in the original paper[34]. Nevertheless, the compar-
ison remains fair under our setting. As shown in Tab. 1,
our method outperforms the baselines across all four sce-
narios. Notably, the improvements are more significant in
the multi-agent scenarios of 2 × 1 and 2 × 2. This suggests
that by explicitly modeling multi-agent interactions, our ap-
proach excels in predicting multi-agent behaviors, demon-
strating the effectiveness and superiority of our method.
Attention Visualization: We visualize the attention of the
agent cross-attention module to explore the model’s under-
standing of interactions among multiple agents. Figure 2
presents two examples under the 2 × 1 scenario, showing
the Attention heatmaps for Agent1 (center perspective) with
respect to the inputs from TPV, Agent1, and Agent2 per-
spectives (from left to right). In the two observed videos,
the agents are performing either cooperative actions or in-
dividual actions.

In the upper example, Agent1 is about to receive the cut-
ting board from Agent2. The model assigns high attention
weights to both agents’ perspectives, visually focusing on
Agent2 and the object in hand. In the bottom example, the
two agents are currently doing separate actions, and Agent1
focuses mainly on its own perspective. This demonstrates
the model’s ability to comprehensively consider the rela-
tionships between multiple agents’ inputs and interaction
scenarios, validating the effectiveness of our approach. See
more examples in the supplementary material.
Ablation Study: We compare the full model with three
variants: (1) removing TPV input, (2) removing the agent
visual cross-attention module, and (3) replacing agent vi-
sual cross-attention with agent-wise attention applied on ex-
tracted video features. The results are shown in Tab. 1.

We observe that adding TPV input brings only marginal
improvements. This is expected, as TPV cameras in the
LEMMA dataset [19] are often distant and suffer from oc-
clusions (see Fig. 2), providing limited additional informa-
tion beyond the FPV inputs.

Removing the agent visual cross-attention module leads
to performance drops across all four scenarios, with partic-
ularly notable degradation in multi-agent settings.

Interestingly, replacing the visual-level cross-attention
with agent-wise attention over the feature representations
yields mixed results: performance improves in single-agent
scenarios but decreases in multi-agent ones. This is intu-
itive—when only a single agent is present, the benefit of
using raw visual input is limited. However, in multi-agent
settings, modeling interaction at the visual level is more ef-
fective, as it captures spatial relations and inter-agent cues
more directly and expressively.

Figure 2. Attention visualizations of two examples: one where the
two agents are collaborating, and the other where the two agents
are working separately.

4. Conclusion and Discussion

We propose InteractFormer, an innovative model that cap-
tures interactions among multiple agents, leveraging the
correlation of their actions during collaborative tasks to
jointly predict future actions. Experiments demonstrate that
our approach outperforms strong baselines on the LEMMA
dataset. Moreover, our attention analysis and ablation stud-
ies validate the effectiveness and interpretability of the
multi-agent interaction module.

While our results are promising, this work also high-
lights key limitations in current benchmarks for multi-agent
action anticipation. First, existing well-annotated datasets
like LEMMA contain only a small number of agents (at
most two), which restricts the modeling of richer social dy-
namics. Second, there is a lack of explicit supervision re-
garding inter-agent interaction labels—our model captures
interactions through architecture design, but cannot benefit
from direct supervision signals.

We believe these challenges reflect broader issues in the
field: the lack of large-scale, high-quality datasets that cap-
ture complex, multi-agent collaborative behaviors remains
a fundamental bottleneck. In the future, we envision ap-
plying InteractFormer to more diverse scenarios with richer
interaction structures, enabled by the emergence of better
benchmarks. We also see opportunities to incorporate ex-
plicit reasoning modules or symbolic representations once
datasets with annotated inter-agent relations become avail-
able.



Acknowledgements
This work has been funded in part by the Army Re-
search Laboratory (ARL) award W911NF-23-2-0007 and
W911QX-24-F-0049, DARPA award FA8750-23-2-1015,
and ONR award N00014-23-1-2840.

References
[1] Yazan Abu Farha and Juergen Gall. Uncertainty-aware antic-

ipation of activities. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 1

[2] Yazan Abu Farha, Qiuhong Ke, Bernt Schiele, and Juergen
Gall. Long-term anticipation of activities with cycle consis-
tency. In Pattern Recognition: 42nd DAGM German Con-
ference, DAGM GCPR 2020, Tübingen, Germany, Septem-
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[26] Esteve Valls Mascaró, Hyemin Ahn, and Dongheui Lee.
Intention-conditioned long-term human egocentric action
anticipation. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 6048–
6057, 2023. 1

[27] Angelos Mavrogiannis, Rohan Chandra, and Dinesh
Manocha. B-gap: Behavior-guided action prediction for au-
tonomous navigation. arXiv preprint arXiv:2011.03748, 1
(2), 2020. 1

[28] Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwon-
joon Lee. Can’t make an omelette without breaking
some eggs: Plausible action anticipation using large video-
language models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18580–18590, 2024. 1

[29] Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwon-
joon Lee. Plausible action anticipation using large video-
language models. arXiv preprint arXiv:2405.20305, 2024.
1

[30] Razvan-George Pasca, Alexey Gavryushin, Muhammad
Hamza, Yen-Ling Kuo, Kaichun Mo, Luc Van Gool, Otmar
Hilliges, and Xi Wang. Summarize the past to predict the
future: Natural language descriptions of context boost mul-
timodal object interaction anticipation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18286–18296, 2024. 1

[31] Debaditya Roy, Ramanathan Rajendiran, and Basura Fer-
nando. Interaction region visual transformer for egocentric
action anticipation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
6740–6750, 2024. 1

[32] Sebastian Stein and Stephen J McKenna. Combining em-
bedded accelerometers with computer vision for recognizing
food preparation activities. In Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous
computing, pages 729–738, 2013. 1

[33] Shijie Wang, Qi Zhao, Minh Quan Do, Nakul Agarwal,
Kwonjoon Lee, and Chen Sun. Vamos: Versatile action
models for video understanding. In European Conference
on Computer Vision, pages 142–160. Springer, 2024. 1

[34] Zirui Wang, Xinran Zhao, Simon Stepputtis, Woojun Kim,
Tongshuang Wu, Katia Sycara, and Yaqi Xie. Himemformer:
Hierarchical memory-aware transformer for multi-agent ac-
tion anticipation. In NeurIPS Workshop on Video-Language
Models, 2024. 1, 3, 4

[35] Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu Li, Wei Xia,
Zhuowen Tu, and Stefano Soatto. Long short-term trans-
former for online action detection, 2021. 1, 3

[36] Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal,
Kwonjoon Lee, Chiho Choi, and Chen Sun. Object-centric
video representation for long-term action anticipation. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 6751–6761, 2024. 1

[37] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An
instruction-tuned audio-visual language model for video un-
derstanding. arXiv preprint arXiv:2306.02858, 2023. 1

[38] Qi Zhao, Shijie Wang, Ce Zhang, Changcheng Fu,
Minh Quan Do, Nakul Agarwal, Kwonjoon Lee, and Chen
Sun. Antgpt: Can large language models help long-
term action anticipation from videos? arXiv preprint
arXiv:2307.16368, 2023. 1


	Introduction
	Method
	Problem Formulation
	InteractFormer

	Experiments
	Experimental Setup
	Implementation Details
	Results and Discussion

	Conclusion and Discussion

