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Abstract

Recent advancements in multimodal foundation models
have enabled agents to perform complex computer use tasks
by interpreting and interacting with graphical user inter-
faces. However, these agents often struggle with task de-
composition and error reflection. To address these limita-
tions, we propose a three-role agentic framework that en-
hances performance through structured task planning and
reflection. Our framework consists of: (1) a planning agent
that decomposes high-level user goals into actionable sub-
tasks, (2) an action agent that executes the sub-tasks via
grounded multimodal actions, and (3) a reflection agent that
monitors execution outcomes and provides feedback to up-
date the plan or correct the action. Our experiments on
benchmark computer use tasks demonstrate that the pro-
posed framework significantly boosts task completion rates.

1. Introduction

The Computer Use Agent (CUA) task aims to develop ro-
bust agents capable of autonomously operating graphical
user interfaces (GUIs) to complete real-world tasks on a
computer, such as booking a flight, managing files, or ad-
justing system settings [17, 20, 21]. Such agents have the
potential to significantly enhance human productivity, ac-
cessibility, and automation across a wide range of applica-
tions. However, building effective CUAs remains a chal-
lenging goal due to the need for complex task decompo-
sition, multimodal reasoning, visual grounding, and error
recovery in dynamic environments.

Recent advances in vision language models (VLMs) [2,
11] and agent-based frameworks have led to encouraging
progress on this front [7, 10, 25, 26]. An increasing num-
ber of benchmarks [12, 22, 23, 28] provide structured envi-
ronments to evaluate agents’ capabilities in web navigation
and GUI control. Meanwhile, models like GPT-4V [15] and

Claude [1] have demonstrated initial success in integrating
reasoning and action in multimodal settings. Despite these
developments, existing systems still fall far short of human
performance on benchmarks [22] due to the lack of explicit
planning and robust error correction. Another major chal-
lenge is acquiring training data, as such data are difficult to
collect in the wild.

Without relying on large-scale training data collection,
we propose a three-role agentic framework that improves
the performance and reliability of CUAs. Our framework
introduces three specialized agents: a planning agent that
decomposes high-level user instructions into coherent sub-
tasks, an action agent that executes these sub-tasks in the
environment, and a reflection agent that monitors outcomes
and provides corrective feedback. This modular design ex-
plicitly incorporates planning and self-monitoring into the
agent loop. Moreover, this plug-and-play framework allows
each agent to adopt different backbone models.

To evaluate the effectiveness of our framework, we use
GPT-4.1 1 as the backbone model and conduct experiments
on the OSWorld benchmark [22]. Our results show that
the proposed framework significantly improves task com-
pletion rates across domains. Through further analysis, we
identify the primary bottleneck to be the action agent’s vi-
sual grounding process, which often fails to accurately lo-
calize interactive elements, leading to many of the observed
task failures. This finding suggests that future efforts in
CUA should prioritize improving the reliability and preci-
sion of action execution, particularly in the grounding com-
ponent.

2. Related Work
We have seen rapid progress in autonomous agents conduct-
ing computer use tasks in recent years, driven by advances
in large language models (LLMs) such as GPT-4 [14] and
Claude [1], as well as multimodal vision-language models
like GPT-4V [15], Qwen-VL [2] and LLaVA [11]. We dis-

1https://openai.com/index/gpt-4-1/
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cuss existing work into two major directions: the design
of benchmarks and the development of methods that en-
hance agent capabilities. In terms of benchmarks, the field
has evolved from simple, single-page tasks in synthetic en-
vironments (e.g., MiniWoB++[12]) to long-horizon, real-
istic workflows involving complex tools and dynamic UIs
(e.g., WebArena[28] and OS-World [22]). These bench-
marks simulate web browsing and desktop interactions, and
provide challenging settings to evaluate planning, memory,
and generalization abilities. Methodologically, early ap-
proaches relied on structured textual inputs such as HTML
and DOM trees to enable LLM-based planning [8, 24, 27].
More recent works adopt vision-based agents that operate
purely on pixel-level observations, mimicking human in-
teraction with GUIs. For example, Pix2Act [9] demon-
strated that a Transformer-based vision agent, pre-trained
on screen-text prediction tasks, could outperform crowd-
workers on MiniWoB++ without any DOM access. Hy-
brid systems have also emerged, combining textual and
visual signals to leverage the strengths of both modali-
ties. These have been particularly effective in real-world
deployments such as OpenAI’s GPT-4V-based Computer-
Using Agent [16] and Anthropic’s Claude with computer-
use capabilities [1]. These agents integrate multimodal rea-
soning to perform tasks across diverse environments. Be-
yond single-agent performance, various techniques have
been introduced to improve accuracy performance. These
include reinforcement learning [19], visual grounding [4],
self-reflection [8, 18], and in-context learning with few-shot
demonstrations [27]. In parallel, there is a growing interest
in agentic frameworks that structure decision-making into
modular components. AgentStore [6] introduces a meta-
agent that coordinates specialized sub-agents through dy-
namic retrieval. Agent-S [5] which incorporates a plan-
ner, retriever, and specialized modules to support decom-
position, memory, and tool use. Navi [3] integrates vision
and tool-use capabilities in a real Windows OS environ-
ment, and demonstrates competitive results on both Win-
dows tasks and Mind2Web. Despite these advances, current
agents still lag behind human performance and lack of ro-
bustness and task generalization. Handling unexpected in-
terface changes (e.g. random pop-up message windows and
different image resolution) and aligning plans with user in-
tent remain open challenges for the future development of
computer-use agents.

3. Methodology
Overview In this work, we propose a vision-only solu-
tion that enables a general-purpose, task-agnostic VLM to
perform human-like computer interactions using visual in-
put—such as screenshots—without any task-specific fine-
tuning. To achieve this, we adapt a common agentic frame-
work design pattern based on the plan–action–reflection

loop, and incorporate tool use to bridge the general capabili-
ties of a VLM with the specific demands of computer opera-
tion tasks. We structure the VLM’s role through prompting,
allowing it to instantiate different types of agents within the
framework. Given a computer operating environment cur-
rent GUI and a user-defined task, our method unfolds as
follows:

1. Planning Agent: Based on the user’s instruction and the
initial GUI, the planning agent generates a plan consist-
ing of a sequence of sub-tasks necessary to accomplish
the overall goal.

2. Action Agent: The action agent extracts the next sub-
task from the plan and treats it as the current objective.
It then generates an appropriate action based on the cur-
rent GUI and executes it in the environment. To improve
the precision of identifying interactive GUI elements, we
incorporate a grounding tool within the action agent.

3. Reflection Agent: The reflection agent monitors execu-
tion outcomes by comparing the interface state before
and after each action. It determines whether the current
sub-task has been successfully completed and guides the
control flow accordingly—either progressing to the next
step, retrying the current sub-task, or returning to the
planner for re-planning.

A central aim of our approach is to offer a
lightweight and accessible framework that enables stan-
dard VLMs—without additional training—to function ef-
fectively as agents for computer use. An overview of our
method is illustrated in Figure 1.

3.1. Planning Agent
In our framework, the planning agent plays a central role in
both task decomposition and state management, as well as
decision control.

Task Decomposition and State Management Given a
high-level computer use task and the initial interface state,
the planning agent decomposes the user’s goal into a se-
quence of concrete, manageable sub-tasks. It also tracks
the completion status of each sub-task to monitor overall
task progress and maintain clarity on what remains to be
done. This decomposition significantly reduces the com-
plexity of each step, ensuring that sub-tasks are simple,
well-bounded, and easier to evaluate for success or failure
by other agents. For example, if an agent is directly asked to
“change Chrome’s default search engine to Bing” and fails,
it is difficult to diagnose what went wrong. In contrast, if the
agent is assigned the sub-task of “click the settings button in
Chrome,” the failure mode becomes easier to detect—e.g.,
whether it failed to locate the correct UI element or used
the wrong action (right-click instead of left-click). This
decomposition also supports global task coordination. By
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Figure 1. Overview of our approach.

maintaining awareness of the entire task structure, the plan-
ning agent ensures that each sub-task aligns with the user’s
original intent and prevents the system from drifting away
from the overall goal. When the reflection agent detects er-
rors in execution or planning, the planner can dynamically
revise the sub-task history and replan accordingly. This en-
ables the system to recover from failures through flexible
replanning and avoid repeated attempts of previously failed
steps.

Decision Control Beyond generating the initial high-
level plan, the planning agent controls the execution flow
by selecting the next sub-task based on the current GUI or
screenshot and determining when the overall task is com-
plete. It defines termination conditions for the framework,
preventing infinite execution loops.

3.2. Action Agent and Tool Using
As illustrated in Figure 1, each input screenshot is first pro-
cessed by a grounding tool before being passed to the ac-
tion agent. We employ the lightweight OmniParser [13]
as the grounding tool. It identifies interactive GUI elements
by generating short captions, locating their bounding boxes,
and overlays the boxs on the screenshot.

This design choice is motivated by our empirical ob-
servations: most VLMs , without task-specific fine-tuning,
struggle to reliably localize and refer to user interface com-
ponents in visually complex environments. The grounding
tool complements the VLM by providing precise and con-
sistent identification of interactive elements.

The action agent is responsible for executing individ-
ual sub-tasks, such as “clicking the settings button in
Chrome.” Given the sub-task description, the grounded
screenshot, and bounding box metadata, the agent gener-
ates a structured representation of the intended action. This

can be viewed as a form of multimodal semantic pars-
ing—translating visual and textual inputs into an executable
command.

For action representation, we adopt the form from Om-
niParser’s code repository 2. The model is prompted to pro-
duce a JSON object specifying the action type, the tar-
get box id, and an optional value. This output is then
deterministically translated into executable Python code us-
ing libraries such as pyautogui. For example:

{"action": "left_click",
"box_id": 42,
"value": null}

The corresponding Python code is:

import pyautogui
pyautogui.moveTo(box_42_center_x,

box_42_center_y)
pyautogui.click()

This structured representation enables consistent transla-
tion into executable commands.

3.3. Reflection Agent
After the action code generated by the Action Agent is ex-
ecuted in the computer environment, the Reflection Agent
evaluates the outcome. For each specific action, it com-
pares the screenshots taken before and after execution to de-
tect visual changes—such as whether a button was clicked
or text was correctly entered—and determines whether the
sub-task has been successfully completed.

The Reflection Agent classifies outcomes into three cat-
egories: Plan Error, Subtask Failed or Incomplete, and
Subtask Success. Based on the differences between the

2https://github.com/microsoft/OmniParser

https://github.com/microsoft/OmniParser


pre- and post-execution interface states, it autonomously
identifies which category applies and generates a corre-
sponding reasoning trace as feedback to guide the next con-
trol decision:
• If a Plan Error is detected, or if the Action Agent ex-

ceeds a predefined failure threshold for the current sub-
task, control is returned to the Planning Agent to revise
the task plan.

• If the sub-task is deemed Failed or Incomplete, the re-
flection result is passed back to the Action Agent, ini-
tiating another iteration of the action–reflection loop to
continue attempting the sub-task.

• If the sub-task is identified as Successfully Completed,
the feedback is returned to the Planning Agent to update
the progress state.
The design of the Reflection Agent leverages the fine

granularity and evaluability of sub-tasks to pinpoint spe-
cific failure types—such as incorrect UI element localiza-
tion, wrong action execution, or flaws in the task plan—
thereby simplifying error diagnosis and correction. Fur-
thermore, feedback from the Reflection Agent enables both
the Planning and Action Agents to adaptively adjust their
plans or strategies based on observed execution outcomes,
thereby avoiding repeated execution of the same failed ac-
tions or plans.

4. Experiments

Table 1. Success rates of our method vs. PromptAgent across 10
application domains. LO stands for LibreOffice. Success rates are
calculated independently for each domain; the overall success rate
is calculated from all examples combined.

Domain Ours PromptAgent Diff.

Chrome (43) 16.1 2.3 +13.8
GIMP (19) 15.8 0.0 +15.8
LO Calc (44) 0.0 0.0 0.0
LO Impress (39) 2.6 0.0 +2.6
LO Writer (21) 0.0 0.0 0.0
Multi Apps (76) 0.0 5.3 -5.3
OS (23) 17.4 13.0 +4.4
Thunderbird (13) 23.1 0.0 +23.1
VLC (12) 8.3 8.3 0.0
VS Code (18) 16.7 0.0 +16.7

Overall (308) 7.1 2.9 +4.2

4.1. Dataset
We evaluate our proposed method on the widely used OS-
World benchmark, using a subset of 308 task instances. Our
experiments are conducted in the Ubuntu operating envi-
ronment, where interactions with the operating system are
executed via pyautogui code. During evaluation, the sys-
tem is restricted to using only OSWorld-provided screen-
shots as visual input. The selected OSWorld tasks cover 10

distinct domains, including but not limited to browser op-
erations (e.g., Chrome), code editing (e.g., VSCode), and
multi-application workflows. For evaluation, we follow the
official OSWorld protocol and compute the final task suc-
cess rate as the metric.

4.2. Implementation Details

We use GPT-4.1 (version 2025-04-14), accessed via Azure,
as our base VLM. As a baseline, we adopt the Prompt
Agent provided in the OSWorld codebase 3, combined with
the base VLM. We compare this baseline setup with our full
method, which augments the same base VLM with our pro-
posed agentic framework.

4.3. Results

Our experimental results are summarized in Table 1. Com-
pared to the Prompt Agent baseline—built on the same un-
derlying VLM—our agentic framework achieves a substan-
tial improvement in computer use tasks, more than dou-
bling the overall success rate. Our method outperforms the
baseline in 7 out of 10 application domains, with particu-
larly strong performance in Chrome, GIMP, Thunderbird,
VS Code, and OS tasks.

For the LibreOffice suite, both our method and the
Prompt Agent fail to complete any task successfully. Error
analysis indicates that the primary cause lies in the ground-
ing process: the LibreOffice interface contains many small
and low-visibility UI elements, which make it difficult for
the grounding tool to correctly identify and label relevant
components.

Our method also underperforms the baseline in the
multi-application domain. We attribute this to similar
grounding-related issues—specifically, the increased visual
complexity caused by overlapping windows in multi-app
workflows makes it challenging to generate accurate bound-
ing boxes for interactive elements, thereby degrading over-
all task execution.

5. Conclusion

In this paper, we present an agentic framework that en-
ables a VLM to perform computer use tasks without any
task-specific fine-tuning. Our experiments demonstrate that
the proposed method significantly improves performance
across multiple application domains. In future work, we
plan to integrate trained computer use agents into the frame-
work to further enhance the grounding accuracy and action
execution reliability, thereby improving overall system per-
formance.

3https://github.com/xlang-ai/OSWorld/blob/main/
mm_agents/agent.py

https://github.com/xlang-ai/OSWorld/blob/main/mm_agents/agent.py
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