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Figure 1. DIV-FF distills image and video language features in a triple stream feature field tailored to egocentric videos with numerous
interactions and camera wearer movements. Our approach achieves a deep understanding of the environment, supporting precise affordance
segmentation, semantic scene decomposition and consistent segmentation of dynamic objects. With its implicit 3D representation, DIV-FF
comprehends not just novel views but also surrounding areas.

Abstract

Environment understanding in egocentric videos is an
important step for applications like robotics, augmented re-
ality and assistive technologies. These videos are charac-
terized by dynamic interactions and a strong dependence
on the wearer’s engagement with the environment. Tradi-
tional approaches often focus on isolated clips or fail to in-
tegrate rich semantic and geometric information, limiting
scene comprehension. We introduce Dynamic Image-Video
Feature Fields (DIV-FF), a framework that decomposes
the egocentric scene into persistent, dynamic, and actor-
based components while integrating both image and video-
language features. Our model enables detailed segmenta-

tion, captures affordances, understands the surroundings
and maintains consistent understanding over time. DIV-FF
outperforms state-of-the-art methods, particularly in dy-
namically evolving scenarios, demonstrating its potential to
advance long-term, spatio-temporal scene understanding.

1. Introduction
Egocentric videos offer a unique way to understand human
activities from a first-person perspective, benefiting applica-
tions like mobile robotics, augmented reality and assistive
devices. In these videos, an actor continuously moves to in-
teract sporadically with multiple dynamic objects in a static
scene, breaking the usual rigid scene assumption. This tight



integration between objects, actions and the dynamic scene
introduces both opportunities and challenges for environ-
mental understanding from egocentric videos.

Most existing methods in egocentric environment under-
standing either consider a short video clip isolated from the
physical space [9, 11, 26, 31, 49] or they provide a strong
spatial representation but with low semantic understanding
[24, 35, 45, 46]. However, when humans interact repeat-
edly in a fixed environment, we develop a physical and se-
mantic model that integrates the spatial distributions of the
elements around us, both persistent and dynamic. The se-
mantics capture detailed information about objects and their
attributes through natural language descriptions. Addition-
ally, we encode the available action (i.e.: affordance) lo-
cations in the environment, linking physical zones of in-
teraction to the likely activities they support. Besides, we
dynamically update this persistent semantic model as we
interact, recording the location and state of dynamic ob-
jects at every moment. In that sense, some approaches pro-
pose intermediate representations between a pure semantic
understanding of the video without explicit representation
and a pure geometrical representation. They adopt semantic
topological maps [33], local environment state representa-
tions [34] or explicit representations [30, 38] for improving
the environment understanding of the scene. In this work,
we build an implicit (neural network) model that is able to
jointly capture the geometry, appearance and semantic un-
derstanding encoded in the video, and enable predictions in
novel-view points using Neural Radiance Fields (NeRFs).

NeRFs provide a compact implicit representation of the
geometry and visual appearance of a scene [28]. The im-
plicit representation of NeRFs can also be used for seman-
tic encoding, supporting multiple applications like robot
manipulation [19, 25], navigation [54], or scene editing
[21, 44]. For example, Neural Feature Fusion Fields (N3F)
[51] extends the NeRFs predictive capabilities in a teacher-
student fashion, where a teacher model that predicts seman-
tic features in image space is used to train a NeRF-like stu-
dent to predict semantic features in 3D space. These se-
mantic capabilities are further extended in Language Em-
bedded Radiance Fields (LERF) [18], enabling natural lan-
guage query in 3D locations by volume rendering CLIP em-
beddings. However, LERF assumes a rigid scene which
limits its applicability to egocentric videos where the actor
is interacting with the environment. Furthermore, semantic
distillation is based on single-image semantic features (e.g.,
CLIP features) which do not capture the dynamic nature of
actions or changing elements.

In this work, we propose DIV-FF (Dynamic Image-
Video Feature Fields ), the first language embedded fea-
ture field capable of decomposing both the geometry and
the semantics of the scene for the actor, and also for
the persistent and dynamic elements via three different

streams. While previous works focus on image-language
embeddings, we also introduce video-language embeddings
(based on EgoVideo [37]) to understand fine-grained action
descriptions. This encodes the environment affordances,
possible actions available in the environment for the actor,
linking specific activities to physical zones where interac-
tions are likely to occur. A parallel feature field, based on
image-language features from CLIP, captures detailed infor-
mation about objects and their attributes, categorizing them
through natural language descriptions rather than fixed se-
mantic tags, even from novel viewpoints. Its implicit rep-
resentation, similar to NeRFs, ensures that even areas not
visible from the egocentric camera remain strongly con-
nected in the environment model. Although this environ-
ment model provides a persistent long-term representation,
it is dynamically updated as the user interacts, enabling a
precise record of the location and state of dynamic objects
at every moment. Our main contributions are as follows:
• We distill video-language embeddings (from EgoVideo)

to understand temporally dependent semantics, such as
affordances (available actions), which single-image mod-
els like CLIP cannot capture.

• We propose an approach to adapt language embedded fea-
ture fields to dynamic egocentric videos by dividing the
radiance and feature fields depending on whether they are
from the actor, dynamic, or persistent elements.

• We present a robust image-language feature field en-
hanced by leveraging SAM masks, which also includes
the temporal dependency and achieves a consistent seg-
mentation of the dynamic objects over time.

• Our results demonstrate significant improvements in dy-
namic object (+40.5%) and affordance segmentation
(+69.7 %) by using text query relevancy maps. Further-
more, our model effectively connects the egocentric view
with the semantics of the surroundings and decomposes
the scene into different levels.

2. Related works
Egocentric environment understanding using geometric
representations. Some works that consider the physical
layout build semantic explicit representations from videos
of indoor scenes using visual SLAM systems. Rhinehart et
al. [45] learn 2D maps with the functionality of different
actions. Semantic MapNet [16] propose a birds-eye-view
spatial memory for mapping, which is updated with recur-
rent neural networks to remember places visited in the past.
Cartillier et al. [4] encode the egocentric frame, project its
features, and then decode the semantic labels in a 2D map.
Liu et al. [24] recognize and localize activities in an exist-
ing 3D voxel map from an egocentric video. The limitations
in extracting the camera pose from egocentric video [36]
due to the quick camera movements and motion blur have
hampered the unification of 3D geometry and video under-



standing. Recently, the arrival of egocentric 3D datasets
with camera poses [14, 30, 52, 56] and the improvement
of 3D sensors like project ARIA [7] has unlocked the ar-
rival of novel works. Plizzari et al. [38] track active ob-
jects through their appearance and spatial consistency in the
3D scene, even when they are out of view. Mur-Labadia et
al. [30] extract 2D affordance segmentation maps to build
later a point cloud of the environment encoding those labels.
Tschernezki et al. [2] proposed a 3D-aware instance object
tracking by keeping a long-term consistency. EgoLoc [27]
extend episodic memory to 3D by estimating the relative 3D
object pose to the user.
Egocentric environment understanding without geomet-
ric representations. Most egocentric video understanding
works just consider a short time window of the video. Al-
though these works obtain a remarkable semantic under-
standing in multiple tasks like action recognition [26, 49],
object segmentation [47, 52], action forecasting [9, 31] or
capturing activity threads [40], these approaches ignore the
underlying physical space of the scene. Some approaches
[33, 34, 43] extract environment-aware features via alterna-
tive representations that avoid the geometric reconstruction
problems from SLAM in egocentric videos [36]. Ego-Topo
[33] builds a topological map, where the nodes represent en-
vironment zones with a coherent set of interactions linked
by their spatial proximity. EgoEnv [34] encodes the rela-
tive directions of the objects to the camera wearer in a lo-
cal state vector, learning an environment-aware video rep-
resentation. Ramakrishnan et al. [43] capture the inherent
statistics of indoor environments to learn an environment
predictive coding, which applies later for navigation.
Dynamic Radiance Fields. Neural Radiance Fields
(NeRFs) [44] allow capturing and rendering complex 3D
scenes from a set of multi-view posed images. Using an
implicit function and via differentiable volume rendering,
NeRFs map spatial coordinates and viewing directions to
colors and densities. Early methods for rendering dynamic
scenes [10, 22] use pre-trained motion segmentation meth-
ods to mask moving objects, guiding separate NeRFs net-
works to disentangle motion-based components. Liang et.
al [23] leverage DINO features to identify salient fore-
ground regions along spacetime, while Wu et al. [55] de-
couple moving objects from the static background in a self-
supervised manner with two neural radiance fields. Neu-
ralDiff [51] separates the static background, dynamic ob-
jects and the actor’s body via inductive biases, obtaining a
different implicit representation for each part of the scene.
Recently, Zhang et al. [58] optimize 3D Gaussians to re-
construct the scene and track the 3D object motions from
an egocentric video, but requiring pre-extracted hand-object
interaction masks.
Feature Distillation in NeRFs. Several works extend radi-
ance fields to integrate 2D semantic labels into the 3D space

during the optimization [8, 48, 53, 59]. In contrast, the ob-
jective of 3D feature distillation methods [12, 21, 51, 57]
is to transfer 2D image features from a teacher model (i.e, a
self-supervised model like DINO [3]) into a 3D student neu-
ral renderer. Expanding on this, 3D language feature fields
distill image-text CLIP features [42], enabling querying the
3D student with open-vocabulary text descriptions to obtain
relevancy maps. LERF [18] fuses multi-scale patch-level
CLIP features conditioned on the scale. N2F2 [1] addresses
the need for evaluating the rendering at the different scales
by learning a unified feature field, where the different se-
mantic granularities are encoded in a high-dimensional fea-
ture space. LangSplat [41] adopts 3D Gaussians [17] and
combines CLIP features with multi-scale SAM masks, im-
proving the segmentation quality. EgoLifter [15] augments
3D Gaussian Splatting with instance features from egocen-
tric videos, but it only reconstructs the static part of the
scene by filtering out the actor and the dynamic objects.

3. Dynamic Image and Video Feature Fields
(DIV-FF) from Egocentric Videos

Our approach is to build a language embedding feature field
that decomposes the 3D representation in three components
(persistent environment, dynamic environment and actor)
for accounting the inherent dynamics present in egocen-
tric videos. In addition, we incorporate a second modal-
ity stream of embeddings based on video-language models
which can capture the action semantics only present in the
video modality. Besides, we introduce a time-dependent
module on the dynamic and actor stream, capturing the tem-
poral evolution of the feature fields.

3.1. Dynamic Neural Radiance Fields

The geometry model [50] captures the dynamic scene by in-
tegrating three different radiance fields, illustrated in Figure
2. The persistent environment network predicts the color
cpk and density σp

k at each point along a ray rk, given a
viewing position gt and unit-norm viewing direction dt.
Formally, it is defined as (cpk, σ

p
k) = MLPp(gtrk, dt). To

model the dynamic objects in the scene, a second dynamic
environment network (cdk, σ

d
k, β

d
k) = MLPd(gtrk, z

d
t ) es-

timates the density σd
k and the color as a Gaussian distri-

bution N (cdk, β
d
k), where βd

k represents the heteroscedastic
aleatoric uncertainty associated with the color. It also in-
cludes as input a frame-specific code zdt that accounts for
temporal variations of the dynamic objects, which exhibit
sporadic motion relative to the global reference frame. The
actor network is similar to the dynamic environment net-
work, but since the actor moves continuously linked to the
camera, it removes the projection of the ray to the world co-
ordinate system (cak, σ

a
k , β

a
k) = MLPa(rk, z

a
t ). Here, zat is

a frame-specific parameter designed to capture the continu-
ous motion of the actor. The predicted material uncertainty



Figure 2. Overview of DIV-FF. Our three-stream architecture field predicts the color c, the density σ, the material aleatoric uncertainty β,
the image-language features ϕ and the video-language features ψ along a ray r with direction d given the camera viewpoint g and a frame
specific code z. We first extract SAM masks and bounding boxes from the image, that we leverage to obtain a unique CLIP descriptor ϕGT

in all the pixels within the respective mask. We supervise the video-language feature field with local patch features ψGT (Vp) and a global
video embedding ψGT (V ) assigned only to pixels in the interaction hotspot MIH , computed with a pre-trained hand-object detector.

terms βd
k , β

a
k indicate the confidence levels associated with

each ray rk for representing the dynamic objects and the
actor, respectively. By employing improved color mixing
techniques and inductive biases during training, the model
accurately reconstructs scene dynamic geometry as a com-
posite of the three radiance fields. For more details on the
geometric model, please refer to [50].

3.2. Image-Language Feature Field

We extend the three-stream geometry model to distill
image-language semantic features from CLIP [42]. Since
the CLIP image encoder is a global image descriptor, it
lacks pixel-aligned embeddings. To address this, LERF [18]
extracts multi-scale patch-level features, which often fail to
encompass the target object or add excessive contextual in-
formation. It results in blurred object boundaries and noise,
requiring DINO [3] for regularization.

As shown in Figure 2, our model incorporates pixel-
aligned CLIP features by leveraging accurate object masks
generated by Segment Anything Model (SAM) [20] in-
spired by recent works [1, 41]. Specifically, we extract
CLIP features per each segmented mask region ϕGT

M and
its respective bounding box ϕGT

B . We assign the same
weighted descriptor ϕGT = 0.75 · ϕGT

M + 0.25 · ϕGT
B to

all the pixels within the mask. This balanced approach
achieves pixel-level alignment while preserving semantic
context. Furthermore, the use of precise semantic masks
with sharp object boundaries eliminates the need for DINO
regularization used in previous works [18].

3.3. Video-Language Feature Field

While the CLIP image-language features contain fine-
grained and accurate details of the objects, they ignore in-
teraction semantics present in egocentric videos as they re-
quire temporal information. Therefore, we incorporate in
parallel a video-language feature field to capture dynamic
semantics, such as affordances and potential interactions.
We leverage Video-Language Pre-trained (VLP) models
[37, 39], which offer richer and action-oriented context by
pairing narrative descriptions with video using contrastive
learning. We select Ego-Video [37], the state-of-the-art in
multiple Ego4D [13] challenges, for this task. Similar to
CLIP, the video encoder of Ego-Video outputs a single de-
scriptor from a video patch, not pixel-aligned features. In
this case we cannot use object masks as in Section 3.2, be-
cause our goal is to identify interaction hotspot regions,
including both the hands and the object parts (e.g. “knife
edge”, “spatula handle”), not just the entire object. While
SAM’s small masks could localize these areas, their limited
size loses essential action context.

Therefore, we distill the video-language feature field
with patch and global-level embeddings. We first pre-
compute video descriptors ψGT (Vp) from medium-sized
video patches Vp, balancing fine-grained details with action
context. Second, we derive a global descriptor ψGT (V ) for
the entire video, assigned solely to the pixels within the in-
teraction hotspot area MIH [32]:

LV =
∥∥∥ψ̂ − ψGT (Vp)

∥∥∥2 +MIH

∥∥∥ψ̂ − ψGT (V )
∥∥∥2 (1)

This improves the feature field’s capability to capture rele-
vant interaction regions. We obtain the interaction hotspot



Method S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 Average mIoU
LERF 22.1 10.1 11.7 9.7 13.2 18.6 12.5 6.2 19.0 5.5 12.8
NeuralDiff + OWL-ViT 9.4 10.2 13.2 15.4 9.4 13.3 14.5 23.2 23.7 28.9 16.1
NeuralDiff + OWL-ViT + SAM 8.7 12.6 23.2 23.9 13.8 15.9 17.8 28.0 32.9 41.1 21.7
DIV-FF (CLIP in patches) 26.9 21.7 18.3 16.8 18.1 24.9 17.3 12.3 17.9 23.6 19.8
DIV-FF (CLIP in SAM masks) 30.7 19.3 29.6 24.9 31.3 26.1 28.8 14.8 23.8 35.1 26.2
DIV-FF (full model, video infer.) 16.1 15.4 9.3 9.5 21.8 20.7 10.7 18.5 17.9 20.6 16.6
DIV-FF (full model, image infer.) 40.3 30.4 37.4 29.8 29.5 32.6 30.6 15.1 25.1 33.6 30.5 (+40.5%)

Table 1. Dynamic Object Segmentation by CLIP image-language feature field. Compared with LERF, DIV-FF considers a dynamic
scene in the geometric reconstruction. Our full model assigns the same descriptor to all the pixels within a SAM mask. This descriptor is a
weighted average between the CLIP of the mask and the bounding box. We compute relative improvement against the best baseline model.

mask MIH as the union of the hands and active objects
bounding box, pre-extracted with an existing hands-object
detector [47]. Additionally, the training of this feature field
is regularized with pixel-aligned DINO [3] features thanks
to its object decomposition properties [18].

4. Experimental Settings
Implementation details. We extend the three stream ar-
chitecture of NeuralDiff [50] by incorporating 4-layer, 256-
width MLPs for the image ϕ and video language ψ feature
fields, respectively. Both the coarse and fine models use 64
samples, while we select the best 32 samples for the fea-
ture distillation. The representations are summed and nor-
malized post-rendering. We use an Adam optimizer with a
learning rate of 5 ×10−4 and a cosine annealing scheduler.
We train the geometry for 10 epochs with a batch size of
1024, then distill semantic features in two phases: training
only the semantic heads for 5,000 iterations, followed by
the full model for 3 epochs on an NVIDIA 4090.
Feature extractors. To extract the CLIP image embed-
dings, we utilize the OpenCLIP ViT-B/16 model [5] trained
on the LAION-2D dataset following [18] for fair compar-
ison. We prompt SAM [20] with a 32 × 32 grid, filtering
redundant masks by 0.7 IoU, 0.85 stability score, and 0.7
overlap rate. We reduce the dimensionality of CLIP descrip-
tors by training a scene-wise language auto-encoder [41] to
reduce the memory cost. We sample 4 video frames at 60
fps with a temporal stride of 15. Local-patch video fea-
tures are extracted using a patch size of 33% the image size
and a stride factor of 0.5. For masking the global video de-
scriptor, we employ a hand-object detector [47], specifically
finetunned for egocentric sequences.
Dataset. We conduct our experiments on the EPIC-Diff
subset [50] of the EPIC-Kitchens [6] dataset. On average,
each sequence comprises of 900 calibrated frames, span-
ning 14 minutes of egocentric video, featuring multiple
viewpoints and a large number of manipulated objects. Our
evaluation encompasses both our method and the baselines
on the test set, which includes frames not utilized during
model training. This set facilitates assessments of new-view

synthesis and segmentation capabilities.
Baselines. We compare against the following baselines:
• LERF [18] assumes a static scene, using a single stream

for geometry and semantics. The image-language field is
distilled from multi-scale patch-level CLIP features.

• OWL [29]. We apply this open-vocabulary object de-
tector on the novel-view rendered images produced by
Neural-Diff [50].

• OWL+SAM [20, 29] obtains the object’s masks from the
bounding box coordinates provided by the OWL baseline.

Ablations. We compare different versions of DIV-FF.
• DIV-FF (CLIP in patches) keeps the CLIP patch fea-

tures from LERF ϕGT = ϕGT
P , but it introduces the dy-

namic geometry model from [50].
• DIV-FF (CLIP in SAM masks) substitutes CLIP patch

features by embeddings from SAM masks ϕGT = ϕGT
M .

• DIV-FF (full model, image inference) incorporates the
bounding box to obtain the CLIP descriptor ϕGT = 0.75 ·
ϕGT
M + 0.25 · ϕGT

B , where ϕGT
B .

• DIV-FF (full model, video inference). In the full model,
we render from the parallel video-language feature field.

5. Results
Once trained, our DIV-FF model predicts the color c, den-
sity σ, CLIP ϕ and EgoVideo ψ semantic features of a
novel-view in an specific time-step and separates the actor
and the dynamic elements from the persistent environment.
We evaluate this comprehensive spatio-temporal semantic
understanding in different downstream tasks.

5.1. Dynamic Object Segmentation

In each scene, we identify a subset of objects that move
throughout the video and evaluate in the novel-views the
relevancy maps originated by the text queries in the ϕimg

image-language feature field. Following the method pro-
posed by LERF [18], we compute the relevancy score as:
mini

exp(ϕimg·ϕquer)
exp(ϕimg·ϕquer)+exp(ϕimg·ϕi

can)
. This formula evalu-

ates how closely the rendered embedding ϕimg matches the
query embedding ϕquer compared to a set of predefined



Figure 3. Ablations on the image-language feature field. Treating the egocentric video as a dynamic scene enhances geometric recon-
struction, while utilizing SAM masks further improves object segmentation accuracy.

Figure 4. DIV-FF Image-Language relevancy maps in novel-views. We can see the performance of various text queries for dynamic
object segmentation. We can see how the object contours are well defined as we used masks during training.

Figure 5. Surrounding Understanding. DIV-FF understands the
novel view and the surrounding environment, enabling segmenta-
tion of objects at the image’s edges with limited observability.

canonical phrases ϕican (“object”, “thing”, “stuff”, “tex-
ture”, “hands”). Segmentation masks are generated for rel-
evance scores above a specified threshold. For the evalua-
tion, we leverage existing annotations from [51] and report
the mean intersection over union (mIoU). We visualize the
text query relevancy maps by normalizing from 50 % to the
maximun relevancy.

Table 1 presents quantitative results on EPIC-Diff
scenes. The full version of DIV-FF achieves the best per-

formance (30.5 mIoU), surpassing the OWL+SAM detector
(21.7 mIoU) by +40.5%, illustrating that distilling seman-
tic features outperforms traditional open vocabulary object
detection from novel views, since the OWL model fails due
to artifacts and the blurry hand effects in the novel view
rendered. The CLIP patch-level version of DIV-FF (19.8
mIoU) significantly improves upon LERF by explicitly con-
sidering the dynamics parts in the semantic and geometric
fields with the triple stream architecture of DIV-FF. This
leads to sharper reconstructions, particularly for moving ob-
jects as shown in Figure 3. Subsequently, leveraging SAM
to extract object-level CLIP features further improves per-
formance (26.2 mIoU), and generates more accurate and
consistent semantic renderings compared to CLIP patch-
level embeddings. Finally, the introduction of contextual in-
formation from the object bounding boxes ultimately yields
to the best performance (30.5 mIoU).

Figure 4 showcases novel-view renderings for various
text queries in two scenes, effectively capturing fine-grained
details like the “countertop” borders. The uniform assig-
nation of the same CLIP descriptor across all object pix-



Figure 6. Consistent Dynamic Object Segmentation along different time-steps in novel views: The dynamic and actor streams contain
respective frame-specific codes zft andzat . This time encoding is also propagated to the semantic feature field, obtaining consistent seg-
mentations despite the continuous movement of the “spatula” and “blue cutting board”.

Figure 7. Affordance Segmentation qualitative examples. We compare the relevancy maps produced by the image-language field against
those from the video-language field of DIV-FF, based on a detailed action description text query.

els allows DIV-FF to segment objects of any size, such as
“sink” or “banana”. As Figure 6 shows, our approach
also segments consistently dynamic objects across multi-
ple novel views in different time-steps of the sequence due
to the combined impact of object-level CLIP features and
the temporal encoding in the frame-specific codes. Unlike
egocentric methods limited to short time windows, our en-
vironment understanding extends beyond the current view
to the surrounding regions. Figure 5 illustrates this capabil-
ity, showing how our 3D semantic implicit model segments
the “pot” and “sink”, despite being almost occluded in the
edge of the image.

5.2. Affordance Segmentation

We identify affordable actions in each scene and gener-
ate Ego-Video [37] text queries ψquer describing the in-
teraction, which are more complex than simple object la-
bels as they capture nuanced action dynamics. We com-
pute the relevancy score from the video-text feature field ψ

against a different set of canonical phrases ψi
can (“general

task”, “indistinct movement”, “unclear action”, “back-
ground”). We manually annotate affordance segmentation
masks for five affordable actions per sequence, resulting
≈ 700 masks. We report mIoU.

Table 2 demonstrates the effectiveness of video-language
features in capturing actions. Previous methods that rely on
single-image CLIP features miss the dynamic action con-
text in egocentric videos. Consequently, the video-language
feature field of DIV-FF excels in the affordance segmen-
tation, achieving 20.7 mIoU (+69.7 %), benefiting from
training on video narrations, unlike CLIP models that use
static image captions. We visualize these differences in Fig-
ure 7, showing the relevancy scores for text queries detail-
ing specific actions. The image-language model performs
well when actions are explicitly linked to objects, such as
“cut the onion” or “add ingredients to the mixture”. How-
ever, it struggles with verbs or semantic contexts that im-
ply a location, like “wash a kitchen utensil”—which sug-



Method S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 Average mIoU
OWL-ViT 4.8 4.2 1.4 5.6 4.8 2.3 13.2 4.0 5.4 4.4 5.0
OWL-ViT + SAM 4.6 5.4 1.9 4.6 5.8 1.1 8.6 4.5 7.7 8.3 5.3
LERF 18.2 17.4 6.8 11.5 11.9 18.4 11.7 7.5 15.2 4.2 12.2
DIV-FF (CLIP in patches) 17.1 15.6 7.1 9.4 12.9 19.7 12.4 11.3 15.3 12.6 13.3
DIV-FF (full m., image infer.) 17.3 13.7 6.2 13.7 19.1 8.1 18.5 7.1 11.1 3.6 11.8
DIV-FF (full m., video infer.) 20.6 19.9 14.4 22.4 30.1 22.3 20.1 16.8 17.1 23.1 20.7 (+69.7%)

Table 2. Affordance Segmentation. We compare the segmentation masks of a set of affordable actions in the scene. The full version of
DIV-FF is composed by two parallel semantic feature fields, image (CLIP + SAM + boxes descriptors) and video (Ego-Video) respectively.
We compute relative improvement against the best baseline model.

Figure 8. Video-Language Loss ablation. Including the global
supervision term in the interaction hotspot mask produces sharper
relevancy maps compared to just having the patch-level (local)
term of the loss.

gests the sink—or “toast the bread”, associated with the
toaster. In these instances, the video-language model dis-
tinctly outperforms, accurately identifying the action’s in-
teraction hotspot. We also highlight that the localization
of these fine-grained areas is due to the additional global
supervision to the local medium-size Ego-Video patch fea-
tures, as Figure 8 shows. The joined effect of the two losses
improves the relevancy maps by explicitly guiding the op-
timization toward the interaction hotspot regions. Table 2
also shows that for single-image models, patch-based meth-
ods (LERF, CLIP in patches) outperform the full model us-
ing object masks, as we suggested in Section 3.3.

5.3. Amodal Scene Understanding.

Our DIV-FF model comprises three distinct levels of ge-
ometry and semantics, representing different scene levels
as illustrated in Figure 9. This introduces significant ver-
satility in the environment understanding. For example, we
can remove the actor’s hands to reveal the dynamic objects
without occlusions. Additionally, eliminating both the actor
and dynamic elements exposes only the persistent parts of
the scene. Our intuition is that this static spatial-semantic
representation contains strong priors that can be exploited
when the user revisits the scene at another time.

Figure 9. Amodal Scene Understanding. We visualize the PCA
components obtained from the different composition of the image-
text feature fields, showing accurate decomposition of the objects
contours due to the SAM masks regularizing effect.

6. Conclusions

We proposed Dynamic Image-Video Feature Fields (DIV-
FF) to address the limitations of existing egocentric video
understanding methods. By decoupling the scene into per-
sistent, dynamic, and actor streams and integrating video-
based semantics, our approach achieves robust and consis-
tent semantic segmentation over time. The model’s ability
to perceive and reason about both persistent and evolving
scene elements marks a significant improvement in affor-
dance and dynamic object understanding. Experimental re-
sults highlight DIV-FF’s effectiveness in representing the
rich and dynamic nature of egocentric environments, setting
a promising direction for future work in spatial-temporal
scene modeling and interaction-aware perception.
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