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Abstract

How can we predict future interaction trajectories of human
hands in a scene given high-level colloquial task specifica-
tions in the form of natural language? In this paper, we
extend the classic hand trajectory prediction task to several
tasks involving explicit and implicit language queries. Our
proposed tasks require extensive understanding of human
daily activities and reasoning abilities about what is hap-
pening next given cues from the current scene. We also de-
velop new benchmarks to evaluate the proposed two tasks,
Vanilla Hand Prediction (VHP) and Reasoning-Based Hand
Prediction (RBHP). We enable solving these tasks by inte-
grating high-level world knowledge and reasoning capa-
bilities of Vision-Language Models (VLMs) with the auto-
regressive nature of low-level ego-centric hand trajectories.
Our model, HandsOnVLM is a novel VLM that can gener-
ate textual responses and produce future hand trajectories
through natural-language conversations. Our experiments
show that HandsOnVLM outperforms existing task-specific
methods and other VLM baselines on proposed tasks, and
demonstrates its ability to effectively utilize world knowl-
edge for reasoning about low-level human hand trajectories
based on the provided context.

1. Introduction

Humans interact with the everyday world and express them-
selves with informal and oftentimes vague language de-
scriptions. Consider the example in Fig. 1 - when we try
to open the jar, we might think, “Ah, I need something
to help open this slippery jar more easily.” We are uncer-
tain about what we exactly want as well as about how to
come up with a solution. Building a computational system
addressing this need would require a good understanding
of what tools we have lying around (visual scene under-
standing), general apriori experience of opening jars (rea-
soning ability and world knowledge priors), and the ability
to actually execute the necessary actions for opening the jar

Ah, I need 
something to help 
open this slippery 
jar more easily…

To open the slippery lid you 
can use the cloth nearby. 
Here is a plauisble 
trajectory your right hand 
can take overlaid on the 
scene: <HAND> <HAND> 
.........<HAND>.

HandsOnVLM Assistant

Figure 1. HandsOnVLM forecasts low-level actions in the form
of hand trajectories in the user’s egocentric view of a scene when
queried with a question via natural language. It is also capable of
handling indirect queries that require reasoning about what object
to interact with and how to perform the interaction. [Bottom] We
show a glimpse of left and right hand trajectory predictions from
HandsOnVLM across diverse real-world scenarios.

(low-level trajectory). In this paper, we develop language-
conditioned prediction tasks for tackling this problem, pro-
pose benchmarks for evaluating progress on these tasks, and
build a vision-language model (VLM) for predicting low-
level hand trajectories in a user’s egocentric view of a scene
given colloquial language queries.

Our approach HandsOnVLM casts hand trajectory pre-
diction as an auto-regressive next token prediction con-
ditioned on fused video and language tokens. We de-
velop HandsOnVLM as an interactive chat assistant that
we can query. The HandsOnVLM model first converts
the RGB video context to visual tokens and fuses them
with the language tokens through slow-fast pooling [8]
for capturing temporal information from the context video



at a fine resolution. We extend the vocabulary to add a
new <HAND> token, and output a sequence of text and
and hand tokens. We finally have a trajectory decoder to
convert the hand tokens to a sequence of 2D positions of
the left and right hands over the prediction horizon.

2. Approach
HandsOnVLM is a video-based VLM with the capability
of predicting future hand trajectories given a video con-
text and language instructions. There are three key com-
ponents of HandsOnVLM’s architecture: (1) SlowFast to-
kens to capture temporal information at fine temporal reso-
lution, (2) hand representation using an augmented vocab-
ulary of <HAND> token, and (3) iterative hand decoding
to enable auto-regressive trajectory training and inference.
In the training stage, we fine-tune a pre-trained VLM by
combining next-token prediction loss and trajectory loss.

2.1. Architecture
HandsOnVLM takes a sequence of T frames Xv and a lan-
guage instruction Xq as input and predicts future hand tra-
jectories H = {hT+i}N1 , where N is the future horizon. At
each future time step T + i, the future hand location hT+i

consists of the 2D location of the center of the left and right
hands projected to the last observation frame Xv [−1]. The
key components of the architecture include a visual back-
bone Fenc, a vision-to-language projection layer f , a Large
Language Model(LLM) F and a trajectory decoder Fdec.

SlowFast Token Compression. To obtain a capable
video-conditioned VLM we need to be able to interpret tem-
poral information at a fine resolution. Following [8], given
Xv , we embed them into T×M visual tokens using a visual
backbone, where M is the number of tokens in each frame.
Then we apply slow-fast pooling to get T + M visual to-
kens. Then we embed and align those visual tokens to the
language space through a vision-to-language projector f(·).

Hand as Embedding. To represent hand in the lan-
guage space, we extend the existing vocabulary with a
new <HAND> token. However, a typical embedding layer
would encode each <HAND> token identically, resulting
in individual <HAND> token being indistinguishable from
one another. To overcome this limitation, we embed ground
truth hand positions into the <HAND> tokens during the
tokenization process. We feed them into the Large Lan-
guage Model backbone and get the embedding of the last
layer H , where H = F(Xq, f(Fenc(Xv))).

Iterative Hand Decoding. For i-th token in the se-
quence, let Hi be the last-layer embedding of this token
from the Large Language Model. HandsOnVLM decode it
to predict the (i+1)-th token as LLMs do. When (i+1)-th
token is a <HAND> token, we input Hi into a hand tra-
jectory decoder Fdec to predict the hand position of the
(i + 1)-th token hi+1 = Fdec(Hi). During inference,

this decoded position is then encoded into the correspond-
ing <HAND> token embedding for following prediction
rounds. In this way, we ensure that each subsequent predic-
tion is conditioned on all previously predicted hand posi-
tions, maintaining temporal consistency and spatial aware-
ness throughout the inference process and mitigating com-
pounding errors.

2.2. Training Objectives
The model is trained end-to-end using a text generation loss
Ltxt and a hand trajectory prediction loss Lhand. The overall
objective L is the weighted sum of both losses, determined
by λtxt and λhand:

L = λtxtLtxt + λhandLhand (1)

Specifically, Ltxt is the auto-regressive cross-entropy loss
for text generation, and Lhand is the hand prediction loss,
which encourages the model to generate high-quality hand
trajectories as well. Following [13], we employ a recon-
struction loss over future timesteps and a KL-Divergence
Regularization loss as Lhand:

Lhand =

N∑
t=1

Lrecon

(
hT+t, ĥT+t

)
+ Lkl (µh, σh) . (2)

3. Reasoning and Predicting Hand Trajectories
In this section, we introduce two tasks: the Vanilla Hand
Prediction (VHP) task, which extends the classic hand mo-
tion prediction [13], and the proposed Reasoning-based
Hand Prediction (RBHP) task. Finally, we describe a two-
step annotation-generating pipeline to build the correspond-
ing RBHP dataset.

3.1. Vanilla Hand Prediction Task
This task uses explicit language (e.g., “cut the paper”)
to predict hand motion. We use Epic-Kitchens [4, 5],
H2O [11], and FPHA [6]. Hand trajectories are generated
by detecting hands [17], tracking via SURF+RANSAC [1],
smoothing with Hermite splines, and applying filtering.

Datasets are reformatted for VQA with the tem-
plate: “USER: <images>, can you give me the future
hand trajectory for action? ASSISTANT: Sure, it is
<HAND>...<HAND>.”

3.2. Reasoning-based Hand Prediction Task
RBHP requires predicting hand motion from colloquial, im-
plicit instructions. We extract such queries using a two-
step GPT-4-based pipeline applied to Epic-Kitchens[5] and
Ego4D [7], yielding 7.5k and 8k examples respectively.
Step 1: GPT-4 generates a scene description with object
and spatial context.
Step 2: It rewrites the action in an implicit manner using
that context.



4. Experiments

We perform experiments to answer the questions:
• How plausible are the hand trajectories produced

by HandsOnVLM?
• Does HandsOnVLM exhibit reasoning abilities for im-

plicit language queries?
• Does HandsOnVLM generalize zero-shot to unseen

scenes from new datasets?

4.1. Experiment Details
Architecture. We use CLIP-L/14 [16] as the visual en-
coder, Vicuna [3] as the LLM, and CVAE [18] as the de-
coder. The projector is from LLaVA [12].

Datasets. We sample 10 video frames and predict 4 fu-
ture hand positions at 4 FPS. For HandsOnVLM†, we co-
train on five additional tasks: ActivityNet-Captions [10],
YouCook2 [20], NExT-QA [19], LLaVA-150K [12], and
ActivityNet-RTL [8].

Training. HandsOnVLM is trained for 40 epochs with
batch size 128 and learning rate 2e-5. We sample 24k
VHP examples per epoch; HandsOnVLM† uses 6k VHP, 6k
RBHP, and 12k from the other tasks. Visual backbone is
frozen; other modules are fine-tuned. Training on 8 H100
GPUs takes 18 hours.

4.2. Metrics and Baselines
Following previous works [13, 15] we use Average Dis-
placement Error (ADE), Final Displacement Error (FDE)
and Weighted Displacement Error (WDE) as metrics to
evaluate VHP and RBHP tasks.

Vanilla Hand Prediction. For the VHP task, we choose
Kalman Filter(KF) and Object-centric Transformer(OCT)
[13] as the baselines. Since OCT still requires the bounding
box feature of the hand and object as input, to get a fairer
comparison with other end-to-end methods, we implement a
version without the requirement of the bounding box, which
we call OCT-global.

Reasoning-based Hand Prediction. To evalu-
ate HandsOnVLM’s performance on the RBHP task, we
perform baseline comparisons with several VLM-based
methods. We describe these basleines below:

• LLaVA-Traj. Note that the hand trajectories are a se-
quence of pixel positions, we can represent them in
text directly. In this case, we can directly fine-tune the
LLaVA without any modification.

• LLaVA-Pixel2Seq. An alternative approach to repre-
senting hand positions involves quantizing the image
into discrete spatial bins [2], each corresponding to a
unique token. We can extend the existing vocabulary
with those discrete tokens.

• Language-conditioned Image-to-Video Models.
We also compare our model to baselines of the

language-conditioned image-to-video generation
followed by hand-tracking. We use commercial
state-of-the-art language-conditioned image-to-video
systems such as LumaLabs [14], Kling 1.5 [9] and
generate videos conditioned on the last observation
frame and the language description. Following the
hand label generation process in Sec. 3.1, we track and
extract the hand trajectories of the generated video.

4.3. Comparisons with Baselines

We evaluate HandsOnVLM on both the VHP task and the
proposed RBHP task and report the results and compar-
isons with baselines in Table 1 and Table 2 respectively.
All models except HandsOnVLM† are trained on VHP
datasets. HandsOnVLM† is trained on all available datasets.

VHP Task. We evaluate all the baselines on the VHP
datasets as described in section 4.1. Here, the FPHA
and H2O datasets serve as unseen datasets to test zero-
shot generalization capabilities. Among all the VHP
datasets, HandsOnVLM outperforms both the task-specific
methods as well as the VLM-based methods, which demon-
strates its strong ability to produce plausible trajectories
corresponding to how a real human hand would move given
explicit instructions. We also find that HandsOnVLM can
generalize to completely unseen scenes (for example scenes
from H2O and FPHA datasets), which demonstrates it can
effectively leverage the world knowledge of the pre-trained
VLM.

RBHP Task. For evaluations on the RBHP task
shown in Table 2, HandsOnVLM achieves state-of-the-
art performance in all three metrics. This suggests
that HandsOnVLM is able to reason based on implicit
cues of the scene and be applied to complicated scenarios
involving everyday natural language conversations. How-
ever, we observe that LumaLabs [14] achieves the smallest
ADE in the Ego4D RBHP benchmark but relatively higher
FDE and WDE. This may be because the commercial text-
conditioned image-to-video generation models have real-
istic video generation capabilities but cannot understand
reasoning-based language prompts which is necessary for
generating plausible videos maintaining temporal consis-
tency. Since the training dataset compositions of these
video models are not disclosed, there may also be some data
leakage issues of the evaluation datasets in this paper being
a part of their training corpora.

4.4. Qualitative Results

In Fig. 2 we show qualitative results for HandsOnVLM and
the strongest baseline LLaVA-Pixel2Seq. The section above
the horizontal line shows visualization from the validation
split of RHBP datasets.



On Validation Split Zero-shot

EK55 EK100 H2O FPHA
Approach BBox Input ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓

KF ✓ 0.392 0.386 0.199 0.317 0.318 0.168 - - - - - -
OCT ✓ 0.216 0.199 0.105 0.209 0.187 0.102 - - - - - -

OCT-global 0.232 0.218 0.115 0.216 0.193 0.105 - - - - - -
LLaVA-Pixel2Seq 0.156 0.139 0.076 0.254 0.224 0.124 0.150 0.121 0.032 0.214 0.189 0.043

LLaVA-Traj 0.126 0.142 0.073 0.201 0.191 0.103 0.133 0.130 0.031 0.191 0.167 0.041
HandsOnVLM 0.136 0.106 0.062 0.194 0.157 0.090 0.135 0.108 0.028 0.175 0.151 0.034

Table 1. Comparison of VHP task with different baselines. We reported the performance on the validation split of Epic-Kitchen dataset.
For the RBHP baselines, we also evaluate them on two unseen datasets, H2O and FPHA.

Where should my hand
move to if I want to remove 
debris from a round, 
metallic object in the sink?

Input GT LLaVA-Pixel2Seq

Can you provide the hand
trajectory for blending the
diced vegetables in the pan?

Prompt

Where should my hand move
to if I want to gently mix
the contents of the 
cooking vessel?

Can you provide the hand
trajectory for closing
the bottle of milk?

Can you provide the hand
trajectory for taking out
espresso?

HandsOnVLM

Figure 2. Qualitative results for different samples from the validation split of our RBHP dataset. The left-hand trajectory is visualized in
blue and the right-hand trajectory is in red. The arrows denote the direction of each trajectory. GT trajectories are provided for reference.

RBHP (Epic-K) RBHP (Ego4D)
Approach ADE ↓FDE ↓WDE ↓ADE ↓FDE ↓WDE ↓
Kling 1.5 0.31 0.35 0.19 0.27 0.41 0.18
LumaLabs 0.29 0.37 0.18 0.21 0.28 0.13

LLaVA-P2S 0.27 0.24 0.13 0.31 0.28 0.14
LLaVA-T 0.19 0.18 0.10 0.38 0.35 0.17

HandsOnVLM 0.19 0.16 0.09 0.22 0.19 0.10
HandsOnVLM† 0.18 0.15 0.08 0.22 0.18 0.09

Table 2. Comparison of HandsOnVLM on the RBHP task with
different baselines. †means fine-tuned on the RBHP dataset.

4.5. Human Evaluation

Going beyond automated metrics, to determine plausibility
of the generated hand trajectories for various scenarios, we
also perform human evaluations. Results in Table 3 show
that the predictions from HandsOnVLM† (the model fine-
tuned on reasoning tasks) is more plausible for both VHP
and RBHP evaluations, suggesting that model is able to ef-
fectively leverage world knowledge from other reasoning
tasks to reason about low-level hand-object interaction pre-
dictions in diverse scenarios.

Method VHP RBHP
HandsOnVLM 30 ± 3% 28 ± 5%
HandsOnVLM† 70 ± 3% 72 ± 5%

Table 3. Human study showing the % mean and SE of trials where
participants consider hand trajectory predictions from one method
more plausible than the other.

5. Conclusion
In this work, we propose HandsOnVLM, a novel video-
based VLM to predict future hand motion from ego-centric
video contexts. We also propose different prediction tasks,
including Vanilla Hand Prediction (VHP) and Reasoning-
based Hand Prediction (RBHP) to benchmark low-level tra-
jectory prediction and reasoning. We demonstrate the ef-
fectiveness of our approach through extensive evaluations
in diverse real-world scenarios.
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