
Learning to Perceive and Act: Active Event Understanding via Predictive Free
Energy Minimization

Zhou Chen, Sanjoy Kundu, Harsimran Baweja, Sathyanarayanan Aakur
Auburn University
Auburn, AL, 36849

{zzc0053,szk0266,hsb0025,san0028}@auburn.edu

Abstract

Learning to perceive and act in dynamic environments is
a fundamental challenge for embodied agents. Traditional
models for event understanding often rely on offline train-
ing, annotated datasets, or fixed action policies, limiting
their adaptability and real-world robustness. We present
EASE, a self-supervised framework that unifies event per-
ception and active control via predictive free energy min-
imization. EASE predicts feature-level sensory dynamics
and quantifies uncertainty to guide adaptive motor policies,
closing the perception-action loop without external super-
vision. By minimizing prediction errors and dynamically
attending to high-uncertainty regions, EASE enables agents
to segment, track, and summarize salient events in stream-
ing visual input. Our experiments demonstrate that EASE
achieves emergent behaviors such as implicit memory and
target continuity, outperforming conventional trackers on
both simulation and real-world benchmarks while preserv-
ing privacy through in-device, streaming inference. These
results highlight EASE’s promise for scalable, privacy-
conscious event understanding in dynamic environments.

1. Introduction

Understanding dynamic events is challenging for au-
tonomous agents, especially when conventional models rely
on predefined actions or annotations. Storing raw video
for post-processing also raises privacy concerns, highlight-
ing the need for real-time event summarization without re-
taining identifiable data. Inspired by cognitive theories of
event perception [20] and visuomotor control [8], we pro-
pose EASE, a self-supervised framework that unifies spa-
tiotemporal representation learning and embodied control
through free energy minimization. While prior works have
addressed event perception [1, 2, 19] and visuomotor con-
trol [18, 22, 23] as separate problems—often relying on
predefined action categories, annotated datasets, or task-
specific supervision. EASE leverages predictive coding-
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Figure 1. Overview. Perception predicts future observations
(ôt+1) from sensory observations (ot), minimizing discrepancy
(LE). Motor control generates actions (at) from sensory input
(ot), minimizing control loss (LQ). Free Energy Minimization su-
pervises both modules.

inspired mechanisms to dynamically align perception and
action by minimizing perceptual prediction errors.

Prior work on active tracking includes task-specific su-
pervision, multi-agent systems, and adversarial training
with domain-specific rewards [21, 23]. Trehan et al. [18]
proposed an energy-based framework combining predic-
tive learning with PID control. For event perception, self-
supervised methods have been used for action boundary de-
tection and group dynamics [2, 19], though most focus on
representation learning [1, 3, 10] under passive observation.
In contrast, EASE integrates prediction errors as intrinsic
signals for unified perception and control in dynamic envi-
ronments. It leverages self-supervised learning using future
prediction [1, 2, 5, 9, 10, 15], grounded in the Free Energy
Principle (FEP) [6, 7], with embodied applications [11, 12].

Our contributions in this work are as follows: (i) we
propose a unified framework for embodied active event per-
ception that integrates generic event segmentation, sum-



marization, and active tracking using prediction error and
entropy as intrinsic signals, (ii) we develop a free energy
minimization paradigm that couples perception and action
to enable dynamic adaptation to high-uncertainty regions
and salient actors, (iii) we introduce an inherently privacy-
preserving snapshot summarization strategy that retains
only salient events while discarding redundant or sensitive
data, and (iv) we validate EASE through extensive exper-
iments in both simulation and real-world settings, demon-
strating its effectiveness across tasks such as generic bound-
ary detection, active tracking, and summarization without
requiring annotations or external supervision.

2. Proposed Framework: EASE
Overview. Our framework, EASE, consists of two subsys-
tems that work together for sensory event perception and
motor control. The overall architecture is illustrated in Fig-
ure 1. A perception module receives a sequence of sensory
observations ({ot}Tt=1; ot ∈ RH×W×C) as input and out-
puts intrinsic signals for event perception and motor control
in the form of spatiotemporal uncertainty distributions (αt)
and temporal segmentation (δt) cues. These uncertainty and
segmentation cues generate an intrinsic signal that serves as
the guiding metric for the motor control module, which out-
puts a sequence of actions ({at}Tt=1; at ∈ Rk) to minimize
the system’s energy and stabilize event representations.

Learning as Free Energy Minimization Our frame-
work minimizes system free energy, which quantifies en-
vironmental uncertainty, through the joint optimization of
perception and action. Inspired by active inference [6, 7]
and predictive coding [20], the perception module gen-
erates sensory predictions and identifies salient features
through uncertainty distributions, while actions actively
align observations with predictions. This closed-loop in-
teraction continuously refines event representations while
stabilizing sensory input through selective information pro-
cessing and adaptive behavior. The free energy of the sys-
tem can be decomposed into two complementary terms: a
prediction-based drive term, and an action-driven uncer-
tainty reduction term, and is as an optimization for

argmin
a

∥o(a)− ô∥2 + λ
∑
i,j

αij(a)∥oij(a)− ôij∥2

(1)

where o(a) represents the sensory observation at time t in-
fluenced by action a, ô is the predicted observation gener-
ated by the perception module, and αij(a) are uncertainty
distribution values dynamically modulated by action a, fo-
cusing on salient spatial regions. The first term represents
the global sensory prediction error, and the second term
computes and integrates the model’s spatiotemporal uncer-
tainty to emphasize the reduction in regions of higher sur-

prise. λ is a tradeoff factor. By minimizing these terms
jointly, the system learns to optimize its predictions while
selecting actions that stabilize sensory input, aligning per-
ception and action in a unified framework.

Prediction-based Drive The perception module learns
the spatiotemporal dynamics of the environment through a
recurrent, generative model. A visual encoder ϕ(ot) −→ ft
encodes the raw visual observation into a spatial feature
map at time t. At each timestep, the perception module
processes the feature map ft ∈ Rh×w×d and predicts the
expected feature map f̂t+1 at the next timestep. The an-
ticipated feature map is compared to the actual features to
compute the prediction error: LE = ∥ft+1 − f̂t+1∥2. This
error is the primary intrinsic signal for the system.

Quantifying uncertainty. The prediction errors gener-
ated by the perception module also provide a mechanism
for capturing uncertainty and guiding focus. Discrepancies
between observed and predicted feature maps highlight ar-
eas where the system’s understanding is incomplete or in-
accurate. These spatially distributed errors compute an un-
certainty distribution αij that dynamically allocates focus
to salient regions. The uncertainty distribution is given by
αij = Softmax

(
∥ft,ij−f̂t,ij∥2

τ

)
, where ft,ij and f̂t,ij are fea-

ture vectors at spatial location (i, j), and τ controls sensi-
tivity to prediction errors. The motor control module uses
the uncertainty distribution αij to guide actions by learning
a policy that aligns the frame center ct with high-prediction-
error regions ut, reducing uncertainty and implicitly mini-
mizing free energy over time. It is parametrized by a neu-
ral network sharing the perception encoder, enabling access
to the feature-level representation ft. A Deep Q-Network
(DQN) [4] estimates Q-values for discrete actions at ∈ A,
trained with reward rt = −∥ct − ut∥ to encourage focus
on high-αij regions and refine the generative model. The
input state st = {ft, αij} is used to compute the expected
cumulative reward. The policy is optimized using:

LQ = E
[(

Q(st, at)−
(
rt + γmax

a′
Q(st+1, a

′)
))2

]
,

(2)
where rt is the reward and γ is the discount factor.

Learning. The perception and motor control modules
are jointly optimized to minimize the free energy in Equa-
tion (1). The prediction loss LE reduces discrepancies be-
tween predicted and observed features, while the motor pol-
icy minimizes the temporal difference loss LQ by aligning
observations with high-uncertainty regions. These losses
share feature representations, coupling perception and ac-
tion to reduce prediction error and refine both modules.

Implementation Details We use the Stable-
Baselines3 [14] DQN implementation with: a batch
size of 32, a replay buffer size of 50,000, a learning rate
10−5, and an epsilon of 0.02. The policy network uses



Model ↓ Env. → Seg. City Urban City Rand. Room
Mode IoU Acc IoU Acc IoU Acc

EASE-Hybrid 1 0.52 0.70 0.35 0.49 0.47 0.64
EASE 1 0.41 0.59 0.33 0.49 0.51 0.69
EASE-Supervised 2 0.31 0.46 0.29 0.39 0.33 0.46
EASE-Hybrid 2 0.30 0.42 0.20 0.32 0.23 0.30
EASE 2 0.20 0.33 0.26 0.36 0.24 0.34

*Seg. Modes 1 and 2 denote how events are segmented.

Table 1. Event Segmentation Results in Simulation Environments.

EfficientNet-B0 [17] for feature extraction, processed by 2
LSTM modules: LSTM-Event for modeling temporal dy-
namics and LSTM-QVal, to aggregate temporal features for
the policy. Training updates the CNN and LSTM modules
iteratively, with early training focusing on event perception
and later refinement of the control policy. The framework
is trained for 300k timesteps on UnrealCV-Gym [13].

2.1. Event Segmentation and Summarization
Generic event segmentation and snapshot creation are es-
sential for embodied agents in dynamic settings, enabling
them to organize visual input into meaningful segments
and generate concise summaries. By focusing on salient
events and discarding redundant or sensitive data, it also
supports privacy. To enable generic event segmentation
and summarization from streaming videos, the framework
leverages prediction errors (LE) and entropy to detect event
boundaries and select representative frames. This pro-
cess is grounded in the free energy minimization frame-
work, where segments are identified in regions of high
uncertainty, and summarization minimizes local predic-
tion errors within those segments. The system detects
event boundaries Bt based on the entropy of predic-
tion errors within a sliding window of size N : Bt =
argmaxt [Ht] , with Ht = −

∑N
i=1 pt,i log pt,i,, where

Ht is the entropy at time t, and pt,i are normalized pre-
diction errors: pt,i = LE(i)∑N

j=1 LE(j)
, LE(i) = ∥ft+1,i −

f̂t+1,i∥2. Peaks in the entropy curve Ht highlight moments
of heightened prediction error variability, which are treated
as event boundaries. For summarization, the most repre-
sentative frame Sk for each segment k is selected by min-
imizing the prediction loss within the segment [Bk, Bk+1]:
Sk = argmint∈[Bk,Bk+1] LE(t). Sk corresponds to the
frame with the event’s most stable observation.

3. Experimental Evaluation

Setup. We evaluate the EASE framework in both simu-
lated and real-world environments to assess its performance
across active tracking, event segmentation, and summariza-
tion tasks. Simulation Environment. Training and evalua-
tion are conducted in UnrealCV-Gym. We train on the Flex-
ibleRoom environment for real-world experiments, which

Model ↓ Env. → City Urban City Rand. Room
AR AL AR AL AR AL

TLD+PID [18] 12 90 19 115 25 147
MIL+PID [18] 32 59 24 50 21 43
MOSSE+PID [18] 16 56 49 68 28 62
Smart-Target [22] 232 473 233 466 403 458
Random-Target [22] 214 455 204 464 409 455
AD-VAT+ [23] 326 483 322 488 427 493
EASE-Supervised 248 500 290 490 459 500
PredLearn-PID [18] 114 343 71 349 115 319
EASE-Hybrid 233 500 253 496 438 500
EASE 273 500 155 443 214 491

Table 2. Performance Evaluation on the Active Tracking Task.

offers adjustable clutter and difficulty settings. We train
on the Random Room environment for simulation experi-
ments and evaluate on the City1 and UrbanCity environ-
ments. Real-world Evaluation. Real-world experiments are
conducted on the Interbotix LoCoBot platform. The setup
simulates an office-like environment with distractors such
as windows, furniture, and stairs. Three actors perform un-
scripted daily activities, such as walking and adjusting ther-
mostats, in 4-minute episodes that contain at least 10 ac-
tions. Three annotators review and mark event boundaries,
assess tracking success, and summarization quality.

Evaluation Metrics and Baselines. Following prior
work [16], event segmentation is evaluated using preci-
sion, recall, and F1 score, comparing the detected bound-
aries with the ground-truth within tolerance windows. Strict
evaluation uses narrow tolerances (2 to 15 frames), while
relaxed evaluation allows broader tolerances (15 to 45
frames), reflecting the complexities of active event percep-
tion. Tracking performance in the simulation environment
is measured using total environment reward and average
episode length, following prior work [22, 23]. For real-
world tracking evaluation, we use the average qualitative
judgment from the annotators, who grade each frame as
1 (tracking) or 0 (not). We evaluate three versions of our
framework: (i) EASE, the fully self-supervised model, (ii)
EASE-Hybrid, trained with both self-supervised losses and
simulation rewards for enhanced tracking, and (iii) EASE-
Supervised, trained solely on environmental rewards, rep-
resenting state-of-the-art active tracking methods. Segmen-
tation and summarization for EASE and EASE-Hybrid use
LE . For EASE-Supervised, we use state transition differ-
ences as the perception signal, as done in PA [16].

Simulation Results. We train and evaluate our model
and baselines in increasingly challenging environments
within UnrealCV-Gym. We evaluate EASE’s performance
in tracking and segmenting human actions across three
simulation environments—City, Urban City, and Random
Room—using IoU and action-level accuracy (Acc). Ta-
ble 1 shows that EASE-Hybrid achieves the highest scores



Model Segmentation (Strict) Segmentation (Relaxed) Summarization Tracking
Precision Recall F1 Precision Recall F1 Coverage Redundancy Quality Success (%)

EASE 14.71 47.62 22.47 24.75 60.12 35.07 4.58 3.58 4.17 94.42
EASE-Hybrid 38.31 27.82 32.06 51.67 36.98 42.88 4.08 4.17 4.28 90.99

EASE-Supervised 21.87 21.54 21.64 37.04 35.39 36.05 4.27 4.05 4.12 98.01

Table 3. Real-World Performance Evaluation of EASE for Active Event Perception Tasks.
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Figure 2. Qualitative visualization of emergent behaviors. Top:
The robot learns to move backward when too close to the target.
Middle: When a new actor is introduced, EASE tracks both old
and new targets. Bottom: Summarization output of user actions.

in simpler environments like City, likely due to its combined
training. However, in more complex scenes, EASE main-
tains competitive performance, highlighting the strength of
its self-supervised learning objective (LE) for segmentation
and active perception. We also evaluate EASE on active ob-
ject tracking—dynamically following salient actors in com-
plex environments. As shown in Table 2, EASE outper-
forms traditional PID-based trackers and matches or sur-
passes reinforcement learning methods, especially in chal-
lenging scenarios. While EASE-Hybrid performs well in
simpler settings due to reward-driven learning, the fully
self-supervised EASE model maintains strong, consistent
performance, despite not being explicitly trained for it.

Real-world Event Perception. We extend the evalu-
ation of EASE to real-world scenarios to assess its per-
formance on active event segmentation and summarization
tasks. Table 3 summarizes the results across segmentation
(strict and relaxed) and summarization metrics, alongside

tracking success rates. Table 3 shows segmentation re-
sults for EASE, EASE-Hybrid, and EASE-Supervised un-
der both strict and relaxed evaluation settings. The strict
setting demands precise boundary predictions, while the re-
laxed setting allows more tolerance, better reflecting real-
world complexity. The hybrid model achieves higher pre-
cision by predicting fewer boundaries and avoiding over-
segmentation, but at the cost of lower recall in rapidly
changing segments. In contrast, the fully self-supervised
EASE model is more sensitive to movement changes, lead-
ing to higher recall but lower precision. Event summa-
rization complements segmentation by distilling continu-
ous streams into concise keyframes, aiding efficient re-
view under storage, computation, and privacy constraints.
We evaluate summarization using three human-rated met-
rics—Temporal Coverage, Redundancy, and Quality—each
scored 1–5. As shown in Table 3, EASE achieves the high-
est Temporal Coverage, though its motion sensitivity some-
times increases Redundancy. The supervised model scores
best in Quality due to structured training, while the hybrid
model offers a balanced trade-off. These results highlight
how EASE’s fine-grained segmentation supports rich sum-
maries, while other models prioritize minimal redundancy

Qualitative Analysis EASE demonstrates emergent,
memory-like behaviors by maintaining focus on salient tar-
gets through prediction-driven action. While effective, it
can momentarily lose focus in low-motion scenes, high-
lighting a trade-off of its unsupervised approach. Figure 2
highlights some of these behaviors.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced EASE, a novel framework for
active event perception that unifies spatiotemporal repre-
sentation learning and embodied control through a free en-
ergy minimization paradigm. By leveraging self-supervised
learning, EASE adaptively segments, summarizes, and
tracks dynamic events in simulation and real-world environ-
ments without relying on annotations or extrinsic rewards.
The quantitative and qualitative results highlight EASE’s
ability to balance fine-grained event sensitivity with robust
motor control. Moving forward, we aim to enhance EASE
by capturing the hierarchical nature of event segmentation.
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